Arquivos Mensais: junho \25\-03:00 2021

Not Only SURGEONS

Not Only Surgeons

SURGERY, A NOBLE PROFESSION

Surgery is, indeed, one of the noblest of professions. Here is how Dictionary defines the word noble: 1) possessing outstanding qualities such as eminence, dignity; 2) having power of transmitting by inheritance; 3) indicating superiority or commanding excellence of mind, character, or high ideals or morals. These three attributes befit the profession of surgery. Over centuries, the surgical profession has set the standards of ethical and humane practice. Surgeons have made magnificent contributions in education, clinical care, and science. Their landmark accomplishments in surgical science and innovations in operative technique have revolutionized surgical care, saved countless lives, and significantly improved longevity and the quality of human life. Generations of surgeons have developed their craft and passed it on to succeeding generations, as they have to me and to each one of you, to take into the future.

Beyond its scientific and technical contributions, surgery is uniquely fulfilling as a profession. It has disciplined itself over the centuries and dedicated its practice to the best welfare of all human beings. In return, it has been accorded the respect of society, of other professions, and of policy makers. Its conservative stance has served it well and has been the reason for its constancy and consistency. At the beginning of the 21st century, however, profound changes are taking place at all levels and at a dizzying pace, providing both challenges and opportunities to the surgical profession. These changes are occurring on a global level, on the national level, in science and technology, in healthcare, and in surgical education and practice.

To retain its leadership position in innovation and its attractiveness as a career choice for students, surgery must evolve with the times. It is my belief that surgery needs to introduce changes to create new priorities in clinical practice, education, and research; to increase the morale and prestige of surgeons; and to preserve general surgery as a profession. I am reminded of a Chinese aphorism that says, “You cannot prevent the birds of unhappiness from flying over your head, but you can prevent them from building a nest in your hair.”

ADVANCES IN SCIENCE

The coalescence of major advances in science and technology made the end of the 20th century unique in human history. Notable among the achievements are the development of microchips and miniaturization, which fueled the explosion in information technology. The structure of the human genome is nearly completely elucidated, ushering in the genomic era in which genetic information will be used to predict, on an individual basis, susceptibility to disease and responsiveness to drug therapy. The field of nanotechnology allows scientists to work at a resolution of less than one nanometer, the size of the atom. By comparison, the DNA molecule is 2.5 nanometers.

In the last 50 years, biomedical research became increasingly reductionist, turning physiologists and anatomists into molecular biologists. As a result, two basic science fields—integrative physiology and gross anatomy—now have a lower standing in medical education and surgical science than they once did. Surgery and surgical departments can and possibly should claim these fields, but the window of opportunity is narrow. Research is now moving back from discipline-based reductionist science to multidisciplinary science of complexity, in which biomedical scientists work side by side with engineers, mathematicians, and bioinformatists. The ability of high-speed computers to quickly process tens of millions of pieces of data now allows for data-driven rather than hypothesis-based research. This collaboration among different disciplines has already been successful.

TRANSFORMATION OF HEALTHCARE SYSTEM

During the past 75 years, we have seen the entire healthcare system undergo a profound transformation. In the 1930s and for a considerable period thereafter, medical practice was fee-for-service, the doctor–patient relationship was strong, and the physician perceived himself or herself as being responsible nearly exclusively to his or her individual patients. The texture of medical practice started to change when the federal government became involved in the provision of healthcare in 1965. The committee on “Crossing the Quality Chasm” identified six key attributes of the 21st-century healthcare system. It must be:

  1. Safe, avoiding injuries to patients;
  2. Effective, providing services based on scientific knowledge;
  3. Patient-oriented, respectful of and responsive to individual patients’ needs, values, and preferences;
  4. Timely, reducing waits, eliminating harmful delays for both care receiver and caregiver;
  5. Efficient, avoiding wasted equipment, supplies, ideas, and energy;
  6. Equitable, providing equal care across genders, ethnicities, geographic locations, and socioeconomic strata;

No one knows at present what this 21st-century healthcare system will look like. While care in the old system was reactive, in the new system it will be proactive. The “find it, fix it” approach of the old system will be replaced by a “predict it, prevent it, and if you cannot prevent it, fix it” approach. Sporadic intervention, provided only when patients present with illness, will give way to a system in which physicians and other healthcare providers plan 1-, 5-, and 10-year care programs for each patient. Care will be more interactive, with patients taking a more important role in their own care. The technology-oriented system will become a system that provides graded intervention. Delivery systems will not be fractionated but integrated. Even more importantly, care will not be based simply on experience and clinical impression but on evidence of proven outcome measures. If the old system was cost-insensitive, the new system will be cost-sensitive.

SURGICAL PRACTICE

There are many reasons for the declining interest in general surgery, some of which parallel reasons for the drop in medical school applicants in general. One problem specific to surgery is that medical students are given less and less exposure to surgery, due to the shortening of required surgical rotations. Most important, however, is their perception that the life of the surgical resident is stressful, the work hours too long, and the time for personal and family needs inadequate. The workload of the surgical resident over the years has increased significantly both in amount and intensity, without concomitant increase in the number of residents and at a time when hospitals have significantly reduced the support personnel on the surgical ward and in the operating rooms. Students graduating with debts close to $100,000 simply find the years of training in surgery too long, followed by uncertain practice income after graduation.

From several recent studies, lifestyle is the critical and most pressing issue in surgical residency. Some studies have also shown that the best students tend to select specialties that provide controllable lifestyles, such as radiology, dermatology, and ophthalmology. We have a problem not only in the declining number of students applying for surgical training but also in the declining quality of those who do apply. In a preliminary survey of 153 responding general surgery programs, we found that attrition (i.e., categorical residents leaving the training programs) occurred at a rate of 13% to 19% in the last 5 years. In 2001, 46% of those leaving general surgery training programs cited lifestyle as the major reason.

Unless these trends are reversed, general surgery as a specialty is threatened, and a future shortage of general surgeons is inevitable. I know that the Council of the American Surgical Association is most concerned about the crisis in general surgery. We must do a better job of communicating to students and residents that the practice of surgery is as rewarding as ever and full of opportunities in this new era. Innovations in minimal access and computer-assisted surgery and simulation technology provide exciting new possibilities in surgical training. We must also look very carefully at the demands of surgical residency and improve the life of residents without compromising their surgical experience. Unless we deal with work hours and quality of life issues, we are likely to see continuing decline in the interest of medical students in surgical training.

CONCLUSIONS

In conclusion, the noble profession of surgery must rise to meet numerous challenges as the world in which it operates continues to undergo profound change. These challenges represent opportunities for the profession to develop an international perspective and a global outreach and to address the growing needs of an aging population undergoing major demographic and workforce shifts. The leadership of American surgery has a unique role to play in the formulation of a new healthcare system for the 21st century. This task will require commitment to quality of care and patient safety, and it will depend on harnessing the trust and support of the American public. Advances in science and technology—particularly in minimal access surgery, robotics, and simulation technology—provide unprecedented opportunity for surgeons to continue to make landmark contributions that will improve surgical care and the human condition. I believe it is also crucially important that we train surgeon-scientists who will keep surgery at the cutting edge in the genomic and bioinformatics era. Ours is a noble profession imbued with eminence, dignity, high ideals, and ethical values. It has a rich and proud heritage… and I quote, “The highest intellects, like the tops of mountains, are the first to catch and reflect the dawn.”

Source: Lecture from Haile T. Debas, MD (UCSF School of Medicine, San Francisco, California) Presented at the 122nd Annual Meeting of the American Surgical Association, April 25, 2002, The Homestead, Hot Springs, Virginia.

Complete references here

Biliary Tree Vascularization

The gallbladder lies at the equator between the right and left hemiliver, an imaginary line known as Cantlie’s line or the Rex-Cantlie line coursing between segments 4b and 5, through the bed of the gallbladder towards the vena cava posteriorly. The gallbladder is mostly peritonealized, except for its posterior surface which lies on the cystic plate, a fibrous area on the underside of the liver.

The proportion if its circumference varies, from a pedicled gallbladder with little to no contact with the cystic plate to a mostly intrahepatic gallbladder surrounded by liver parenchyma. The gallbladder carries no muscularis mucosa, no submucosa, and a discontinuous muscularis and only carries a serosa on the visceral peritonealized surface. These anatomical specificities facilitate the direct invasion of gallbladder cancer into the liver. This is why the surgical treatment of gallbladder cancer mandates a radical cholecystectomy, which includes resection of a wedge of segments 4b and 5, when the T stage is higher or equal to T1b. From the body of the gallbladder, a conical infundibulum becomes a cystic duct that extends as the lower edge of the hepatocystic triangle towards the porta hepatis and joins with the common hepatic duct (CHD) to form the CBD. As in the rest of the biliary system, variation is the rule when it comes to the cystic duct confluence with the CHD. It can variably run parallel to it for a distance prior to inserting or spiral behind it and insert on its medial aspect. It can variably insert into the RHD or the RPD, the latter in 4% of livers and particularly when the RPD inserts into the CHD (i.e., below the left-right ductal confluence). This configuration is notorious for exposing the RPD to a risk of injury at the time of cholecystectomy. Rare variations of gallbladder anatomy, including gallbladder duplication and gallbladder agenesis, are also described but are rare. The CBD courses anterolaterally within the hepatoduodenal ligament, usually to the right of the hepatic artery and anterolaterally to the portal vein. However, hepatic arterial anatomy can vary, and when an accessory or replaced hepatic artery is present arising from the superior mesenteric artery, the accessory or replaced vessel courses lateral to the CBD. In its conventional configuration, the right hepatic artery crosses posteriorly to the RHD as it heads towards the right liver, but 25% of the time it crosses anteriorly. These anatomical variants are all relevant to developing a sound surgical strategy to treat hilar CCA. Of note, while left hepatic artery anatomy can also be quite variable, rarely does it affect surgical decision-making in CCA to the same degree as right hepatic artery anatomy.

Distally, the CBD enters the head of the pancreas, joining the pancreatic duct to form the hepatopancreatic ampulla. Just distal to this is the sphincter of Oddi, which controls emptying of ampullary contents into the second portion of the duodenum. When the junction of the CBD and the pancreatic duct occurs before the sphincter complex, reflux of pancreatic enzymes into the biliary tree can lead to chronic inflammatory changes and anatomical distortion resulting in choledochal cysts, known risk factors for the development of CCA. Unlike the rest of the liver parenchyma, which receives dual supply from the arterial and portal venous circulation, the biliary tree is exclusively alimented by the arterial system. The LHD and RHD are alimented respectively by the left hepatic artery and right hepatic artery, which can frequently display replaced, accessory, and aberrant origins – the left artery arising conventionally from the hepatic artery proper but alternatively from the left gastric artery and the right hepatic artery arising from the hepatic artery proper but also variably from the superior mesenteric artery. In hilar CCA, variable combinations of hepatic arterial anatomy and tumor location can either favor resectability or make a tumor unresectable.


Within the hilum of the liver, a plexus of arteries connects the right and left hepatic arteries. Termed the “hilar epicholedochal plexus,” this vascular network provides collateral circulation that can maintain arterial supply to one side of the liver if the ipsilateral vessel is damaged. The preservation of arterial blood supply to the liver remnant is crucial, particularly when creating an enterobiliary anastomosis. Its absence leads to ischemic cholangiopathy and liver abscesses that can be difficult to treat. The CBD receives arterial supply inferiorly from paired arterioles arising from the gastroduodenal artery and the posterior superior pancreaticoduodenal artery, the most important and constant arterial supply to the distal CBD. Proximally the CBD is alimented by paired arterioles of the right hepatic artery. These vessels, known as the marginal arteries, run in parallel to the CBD, laterally and medially to it. Denuding the CBD of this arterial supply risks stricture formation after choledochoenteric anastomosis.

#OzimoGama #TheSurgeon #DigestiveSurgery

References : https://bit.ly/3fOmcv2

%d blogueiros gostam disto: