Arquivos de Categoria: Cirurgia do Aparelho Digestivo

Laparoscopic distal PANCREATECTOMY

Laparoscopic distal pancreatectomy has become a relatively standard operation and has been approached by a similar technique by multiple groups since its original description. Generally, four or five trocars are used to gain entrance to the abdominal cavity, but three-trocar LPD has been described. A “clockwise” technique results in an efficient, reliable, and uniform approach for removing the vast majority of lesions that are located to the left of the neck of the pancreas (Asbun & Stauffer, 2011). The technique begins with the positioning of the patient in a modified right lateral decubitus position. The degree of lateral positioning depends on the patient’s body habitus and the location of the lesion, as well as the tilting capabilities of the operative bed. The use of gravity assisted retraction with the patient in a reverse Trendelenburg position with the left flank elevated is a key component to successful exposure of the tail of the pancreas and the spleen. Four mid- to left-sided abdominal trocars are placed in a semicircle around the body and tail of the pancreas, including two 12 mm and two 5 mm trocars, and a five step clockwise method is used.

Step 1: Mobilization of the splenic flexure of the colon
and exposure of the pancreas

The first step is mobilization of the splenic flexure of the colon. The lateral attachments, splenocolic ligament, and gastrocolic ligament are succes-sively transected to allow access to the lesser sac. If the spleen is to be removed, the dissection proceeds cranially, and the short gastric vessels are transected up to the superior pole of the spleen. Sufficient mobilization of the colon allows for gravity-assisted retraction of the colon, and the stomach is completely freed from the anterior aspect of the body and tail of the pancreas. Infrequently, an additional trocar or tacking stitch is required to elevate the stomach to the anterior abdominal wall off the pancreas and out of the operative field.

Step 2: Dissection along the inferior edge of the pancreas
and choosing the site for pancreatic division

The second step is to identify the inferior border of the pancreas and create a window in the fibroadipose tissue plane between the retroperitoneum and the pancreas. This dissection is carried medially toward the lesion of interest. Intraoperative ultrasound is performed to clearly identify the lesion and the planned site of division of the pancreas.

Step 3: Pancreatic parenchymal division and ligation
of the splenic vein and artery

The third step is pancreatic parenchymal division and ligation of the splenic artery and vein. After dissecting around the pancreas in 360 degrees, a Penrose drain or suture is placed around the proposed site of division of the pancreas and is used to elevate the pancreas from the retroperitoneum. A band passer instrument is helpful for this part of the procedure. For distal pancreatectomy, the splenic vessels will often be dissected, ligated, and divided en bloc with the parenchyma. For subtotal resections with division of the pancreas at the neck, the underlying superior mesenteric vein and splenic vein are dissected away from the posterior aspect of the pancreas, and the celiac trunk is identified individually and dissected free from the neck and proximal body of the pancreas. Parenchymal transection is performed with a linear stapling device by using a slow, gradual, and stepwise compression technique. Thick tissue staples (open staple height of approximately 4 mm) with staple line reinforcement is preferred for almost any pancreas consistency, and the stapler is gradually closed in a stepwise manner over the course of several minutes to allow for parenchymal compression. Parenchymal transection and splenic vessel division are done individually for subtotal pancreatectomy for lesions located between the gastroduodenal artery and the celiac trunk.

Step 4: Dissection along the superior edge of the pancreas

The fourth step is to sweep the pancreas inferiorly and anteriorly off the retroperitoneum toward the splenic hilum. A deeper dissection plane that includes Gerota fascia and the left adrenal gland may be chosen for malig-nancies that appear to have posterior invasion from the pancreas.

Step 5: Mobilization of the spleen and specimen removal

The fifth step is the mobilization of the spleen from its diaphragmatic and retroperitoneal attachments and placement of the specimen within a bag for exteriorization. Major complications were seen in less than 10% of patients, and both the conversion rate and the clinically significant pancreatic fistula (grade B/C) rate by using the gradual stepwise compression stapled technique was seen in fewer than 5%. Operative drains were rarely placed.

Outcomes
The minimally invasive approach to resection of the left-sided pancreas by distal or subtotal pancreatectomy has gained acceptance and been used with an increasing frequency worldwide during the past decade. Multiple systematic reviews have demonstrated the safety of LDP and its superiority versus open distal pancreatectomy (ODP) for selected outcomes, such as blood loss, transfusion rates, and hospital stays; it must be remembered, however, that all these studies are retrospective in nature and therefore severely limited by significant selection bias. All studies showed similar reoperation rates and mortality, but most found a lower overall morbidity for the laparoscopic approach. Some studies identified lower rates of specific complications, such as wound infection and even pancreatic fistula. Although oncologic clearance was similar, most studies have shown that ODP is often the surgery of choice for larger tumors.

Femoral Hernia REPAIR

Femoral hernia is not as common as inguinal hernia. It is often associated with incarceration or strangulation, resulting in peritonitis and mortality.

ANATOMY

The pelvicrural interval (the opening from the abdomen to the thigh) is divided into two spaces: a lateral space, the lacuna musculosa, through which the iliopsoas muscles pass; and a medial space, the lacuna vasculosa, for the femoral vessels. The external iliac vessels run along the anterior surface of the iliopsoas muscle in the pelvis, pass between the iliopubic tract and Cooper’s ligament, and finally course beneath the inguinal ligament to become the femoral vessels. Where the external iliac vessels run down into the lacuna vasculosa, transversalis fascia covers the vessels to form the femoral sheath. It extends approximately 4 cm caudally and ends as the adventitia of the femoral vessels. The medial compartment of the femoral sheath is called the femoral canal, which is ordinarily less than 2 cm in diameter and contains lymphatic vessels and glands. The true opening of the femoral canal is a musculoaponeurotic ring, consisting of Cooper’s ligament inferiorly, the femoral vein laterally, and iliopubic tract superiorly and medially. In the past, the medial border of the femoral ring was for the lacunar ligament. The lacunar ligament is an attachment of the inguinal ligament to the pubic bone, however, and lies in the outer layer of the transversalis fascia.

McVay demonstrated that the medial boundary of the femoral ring is the lateral edge of the aponeurosis of the insertion of the transversus abdominis muscle with transversalis fascia onto the pectin of the pubis, not the lacunar ligament. Condon also demonstrated that the iliopubic tract bridges the femoral canal and then curves posteriorly and inferiorly, its fibers spreading fanwise to insert adjacent to Cooper’s ligament into a broad area of the superior ramus of the pubis. Thus, the true inner ring of the femoral canal is bounded by the iliopubic tract anteriorly and medially, and by Cooper’s ligament posteriorly. If a surgeon incises the inguinal ligament in a tightly incarcerated femoral hernia, he or she will find that the hernia cannot be reduced because of the more deeply placed ring. The distal orifice has a rigid boundary—surrounded by the lacunar ligament medially; the inguinal ligament superiorly; and the fascia of the pectineal muscle—and is usually less than 1 cm in diameter. The rigidity of these structures is the reason why strangulation often occurs in femoral hernias.

ETIOLOGY

Currently, the ‘‘acquired’’ theory is widely accepted; however, the true cause of femoral hernia is not known. McVay demonstrated that the width of the femoral ring, which is determined by the length of the fanwise insertion of the iliopubic tract to Cooper’ ligament, is the main etiologic factor of the femoral hernia. Considering that the femoral hernia is very rare in children and most common in elderly women, however, McVay’s concept cannot be the only reason for the occurrence of femoral hernia. Nyhus noted the presence of a relatively large femoral defect without an accompanying femoral hernia during the preperitoneal approach. This may be caused by the acquired weakness of the transversalis fascia and a consequent predisposition to the development of the femoral hernia.

INCIDENCE

The ratio of femoral hernia relative to all groin hernias is reported to be 2% to 8% in adults . Femoral hernias are very rare in children, and most commonly observed between the ages of 40 and 70. The peak distribution is in the 50s, with a slight decrease in the 60s and 70s. As for sex distribution, femoral hernia is 4 to 5 times more common in female than in male; however, there are some reports that it is more common in men than in women. A right-sided presentation is more common than left, but the reason is not known.

TREATMENT

Finally, femoral hernia is usually thought of as requiring emergency surgical treatment. Only 30% of our cases were treated as emergency operations, however, whereas 70% were elective. Unless patients complain of severe abdominal pain or ileus, surgeons need not perform emergency operations. In summary, the mesh plug hernia repair for femoral hernia has resulted in a reduced recurrence rate, shortened hospital stay, and a low rate of postoperative complications.

How to Make a Good STOMA

Resultado de imagem para colostomy

INTRODUCTION: Few other surgical procedures adversely affect a patient’s quality of life as much as a poorly functioning stoma. An ideal stoma meets two criteria: (1) The site is optimally matched to a patient’s variability in body form, physical ability and activities. (2) The construction minimises complications that relate to the use of stomal appliances and minimises technical failings such as parastomal hernia or prolapse.

SURGICAL ASPECTS

1.The Skin and Subcutaneous Incision
A circular stomal opening is generally preferred, though for temporary stomata a linear incision minimises skin loss and may improve cosmesis after closure. We favour making a cruciate incision with cutting electrocautery, each quadrant being excised in a curved fashion with electrocautery or curved (Mayo) scissors to prevent charring.

2.Muscle Fascia
A cruciate incision of the muscle fascia is generally used, mirroring that for the skin incision but without excision. It is common practice during laparotomy to align the muscle fasciotomy and skin incision by medial retraction of the rectus sheath using tissue-grasping forceps (e.g. Lanes’). This may reduce angulation of the bowel through the abdominal wall, though is unlikely to affect the duration of paralytic ileus in the post-operative phase and has little effect on eventual function.

3.Muscle
A muscle-splitting incision through rectus abdominis is advocated, though this may simply be a necessary anatomical consequence reflecting the preference for an anterior stoma distant from the umbilicus, iliac crest and midline wounds. Stomal formation lateral to rectus abdominis does not actually seem to increase the risk of para-stomal hernia formation. This is unsurprising, since muscle division and correct closure at apppendicectomy rarely leads to hernia formation.

4.Choice of Bowel for the Construction of a Stoma
The principles of good anastamotic healing apply equally to stomal construction. Attention to tissue handling, vascularity and lack of tension encourage primary healing at the muco-cutaneous junction. Poor technique risks separation of the muco-cutaneous junction and prolonged healing by granulation, leading to stenosis. Tension may worsen stomal or spout retraction and can lead to difficulties in attaching stomal appliances to a concave stoma, particularly if a tight limb of the stoma gives a skin fold crease. Similarly, impaired vascularity can turn stomata a worrying colour, particularly if inotropes are required for a critically ill patient, and although frank necrosis is rare, stenosis may result in the longer term.

“Patients often judge a surgeon’s technical ability by the external appearance of scars, and may also judge a surgeon’s care and precision by the appearance and function of an abdominal stoma.”

Internal Hernia after Laparoscopic Gastric Bypass

The purpose of this review is to evaluate the incidence and management of internal hernias (with or without SBO) after LGBP.

INTRODUCTION

Laparoscopic Roux-en-Y gastric bypass (LGBP) has been shown to be an effective treatment for morbid obesity, both in terms of weight loss and improvement in multiple comorbidities. While the laparoscopic approach offers many advantages to the patient in terms of fewer wound complications, decreased length of hospital stay, and decreased postoperative pain, certain complications of this operation continue to pose difficult clinical problems as the number of procedures performed increases. One such complication is internal hernia through one of the mesenteric defects, which can result in small bowel obstruction, ischemia, or infarction and often requires reoperation.

An internal hernia is defined as a protrusion of intestine through a defect within the peritoneal cavity, as opposed to an external (or incisional) hernia that protrudes through all layers of the abdominal wall. Internal hernias almost always occur through iatrogenic defects created surgically.

Internal_Hernia_Ozimo_Gama

Incisional hernias occur at a higher incidence after open gastric bypass (GBP) at a rate of about 20 percent. LGBP has a lower rate of incisional hernias. A recent study by Rosenthal, et al., showed a 0.2-percent rate of port site hernias in 849 patients using blunt-tip trocars at 3,744 port sites. Internal hernias, on the other hand, occur more frequently in LGBP than in the open procedure. This is a significant clinical problem, since internal hernia is the most common cause of small bowel obstruction (SBO) after LGBP. Retrospective reviews have found the incidence of SBO after LGBP to be between 1.8 and 9.7 percent. The incidence of internal hernia after LGBP is between 0.2 and 8.6 percent based on multiple studies.

This incidence is higher than that seen with open GBP, and this is presumably due to decreased adhesion formation after laparoscopic surgery compared to open surgery. The creation of potential space as a result of weight loss may also be a contributing factor in the etiology of internal hernias, which often present in a delayed fashion. In addition, the particular case of pregnancy— with the mass effect of an enlarging uterus—may predispose to this condition, as there have been three case reports in the literature of internal hernia during pregnancy, one of which resulted in intestinal ischemia and fetal demise. Due to the increasing scope of this problem and its potentially devastating consequences, surgeons should have a high clinical suspicion for internal hernia after LGBP.

An internal hernia can potentially occur through either two or three defects, depending on whether a retrocolic or antecolic technique is used for the Roux limb. Petersen’s defect is defined as the space between the Roux limb and the transverse mesocolon. A defect is also present between the biliopancreatic and Roux limbs at the jejunojejunostomy. If a retrocolic approach is used, a third defect in the transverse mesocolon is created. This is the most common site of internal hernia in most reports, which has prompted many surgeons to adopt an antecolic technique in order to eliminate this defect. Higa’s study of 2,000 patients showed an internal hernia distribution of 67 percent mesocolic, 21 percent jejunal, and 7.5 percent Petersen. However, some centers experience a higher rate of hernia in the jejunal or Petersen’s defects, despite the use of a retrocolic approach.

PRESENTATION

Patients with internal hernia most commonly present with abdominal pain, and may also have symptoms of small bowel obstruction. The time of presentation varies greatly and may occur within one week of the initial operation or up to three years postoperatively. However, the majority of cases occur between 6 and 24 months postoperative. Radiographic diagnosis of internal hernia presents a challenge since the characteristic findings on computed tomography (CT) scan are often missed.

Features suggestive of an internal hernia include small bowel loops in the upper quadrants; evidence of small bowel mesentery crossing the transverse mesocolon; presence of the jejunojejunostomy superior to the transverse colon; signs of small bowel obstruction; or twisting, swirling, crowding, stretching, or engorgement of the main mesenteric trunk and according to one study, the sensitivity and specificity of CT is 63 percent and 76 percent, respectively.

Another study showed that although the diagnosis was only made prospectively by CT scan in 64 percent of cases, a retrospective review of the images showed that diagnostic abnormalities were present in 97 percent of cases. A report of five cases of internal hernia by Onopchenko found that only one was diagnosed preoperatively by radiological reading, even though all five had findings suggestive of internal hernia to the bariatric surgeon. These findings emphasize the need for communication with the radiologist, careful attention to patient history, and high clinical suspicion for internal hernias. In rare cases, closed loop obstruction and extensive bowel ischemia and infarction can occur. This dreaded complication underscores the necessity of making a rapid diagnosis. If the patient has significant symptoms but radiologic studies are negative, a diagnostic laparoscopy is warranted to rule out internal hernia.

PREVENTION AND TREATMENT

Given the prevalence of internal hernias and the increasing popularity of bariatric surgery, it is important to prevent or minimize this complication at the time of the initial operation. Although there have been no randomized, controlled trials comparing different techniques of LGBP, some authors have anecdotally reported lower rates of internal hernia after modifying their technique from a retrocolic to antecolic approach. Champion and Williams reported a significant decrease in small bowel obstruction after changing to an antecolic position, and Felsher and colleagues found no internal hernias in their study after adopting the antecolic approach.

However, other studies support careful defect closure as the most important factor in reducing hernia rates. Dresel and colleagues report no internal hernias after modifying their technique to include closure of Petersen’s defect. Carmody and colleagues report a decreased hernia incidence when closing all defects, even with a retrocolic approach. DeMaria’s study reports anecdotal improvement after closing mesenteric defects in two layers, on the medial and lateral aspects of the defect.

The majority of internal hernias can be successfully treated laparoscopically, with reduction and defect closure. The laparoscopic approach is usually successful; however, because of the lack of adhesion formation after laparoscopy, Capella, et al., suggest laparotomy for patients who experience a second episode of bowel obstruction due to recurrent internal hernia after laparoscopic repair. The greater adhesion formation after laparotomy may help prevent future internal hernia formation.

CONCLUSION

One of the benefits of laparoscopy, decreased adhesion formation, is likely also responsible for the increasing prevalence of internal hernia as a complication following laparoscopic gastric bypass. Although it has not been borne out in randomized clinical trials, anecdotal evidence and expert opinion suggest that Roux limb position and mesenteric defect closure at the time of initial operation are important factors in ultimate rates of hernia formation. Careful attention must be paid to individual surgical techniques in order to prevent this potentially devastating complication. The benefits of LGBP are maximized when there is a low incidence of postoperative hernias and resultant obstruction.

Surgical management of gastrointestinal bleeding

GI_Bleeding_Ozimo_Gama

Severe gastrointestinal bleeding has historically been a clinical problem primarily under the purview of the general surgeon. Diagnostic advances made as the result of newer technologies, such as fiberoptic and video endoscopy, selective visceral arteriography, and nuclear scintigraphy, have permitted more accurate and targeted operations. More importantly, they have led to safe, effective nonoperative therapeutic interventions that have obviated the need for surgery in many patients. Today, most gastrointestinal bleeding episodes are initially managed by endoscopic or angiographic control measures. Such interventions are often definitive in obtaining hemostasis. Even temporary cessation or attenuation of massive bleeding in an unstable patient permits a safer, more controlled operative procedure by allowing an adequate period of preoperative resuscitation. Despite the less frequent need for surgical intervention, traditional operative approaches, such as suture ligation, lesion or organ excision, vagotomy, portasystemic anastomosis, and devascularization procedures, continue to be life-saving in many instances. The proliferation of laparoscopic surgery has fostered the application of minimally invasive techniques to highly selected patients with gastrointestinal bleeding. Intraoperative endoscopy has greatly facilitated the accuracy of laparoscopic surgery by endoscopic localization of bleeding lesions requiring excision. It is anticipated that the evolving technologies pertinent to the diagnosis and management of gastrointestinal bleeding will continue to promote collaboration and cooperation between gastroenterologists, radiologists, and surgeons.

Surgical Management

The role of surgery in acute peptic ulcer bleeding has markedly changed over the past two decades. The widespread use of endoscopic treatment has reduced the number of patients requiring surgery. Therefore, the need for routine early surgical consultation in all patients presenting with acute UGIB is now obviated (Gralnek et al., 2008). Emergency surgery should not be delayed, even if the patient is in haemodynamic shock, as this may lead to mortality (Schoenberg, 2001). Failure to stop bleeding with endoscopic haemostasis and/or interventional radiology is the most important and definite indication. The surgical procedures under these circumstances should be limited to achieve haemostasis. The widespread use of PPIs obviated further surgical procedures to reduce acid secretion. Rebleeding tends to necessitate emergency surgery in approximately 60% of cases with an increase in morbidity and mortality (Schoenberg et al.; 2001). The reported mortality rates after emergency surgery range from 2 – 36%. Whether to consider endoscopic retreatment or surgery for bleeding after initial endoscopic control is controversial (Cheung et al., 2009). A second attempt at endoscopic haemostasis is often effective (Cheung et al., 2009), with fewer complications avoiding some surgery without increasing mortality (Lau et al., 1999). Therefore, most patients with evidence of rebleeding can be offered a second attempt at endoscopic haemostasis. This is often effective, may result in fewer complications than surgery, and is the current recommended management approach. Available data suggest that early elective surgery for selected high-risk patients with bleeding peptic ulcer might decrease the overall mortality rate. It is a reasonable approach in ulcers measuring ≥2 cm or patients with hypotension at rebleeding that independently predicts endoscopic retreatment failure (Lau et al., 1999). Early elective surgery in patients presenting with arterial bleeding or a visible vessel of ≥2 mm is superior to endoscopic retreatment and has a relatively low overall mortality rate of 5% (Imhof et al., 1998 & 2003). Additional indications for early elective surgery include age >65 years, previous admission for ulcer plication, blood transfusion of more than 6 units in the first 24 hours and rebleeding within 48 hours (Bender et al., 1994; Mueller et al., 1994). This approach is associated with a low 30–day mortality rate as low as 7%.

Gastroesophageal Reflux Disease After Bariatric Surgery

INTRODUCTION

The association between GERD and obesity has generated great interest, because obesity has been indicated as a potential risk factor for reflux disease. A directly dependent relationship has been reported because an increase in body mass index has mirrored an increase in the risk of GERD. The incidence of reflux in the obese population has been cited as high as 61%. The pathophysiologic mechanism underlying the link between obesity and GERD has not been fully elucidated and seems to be multifaceted. As the number of obese patients is increasing, so is the volume and variety of bariatric procedures. The effect of bariatric surgery on preexisting GERD or newly developed GERD differs by procedure.

GERD AFTER ROUX-EN-Y GASTRIC BYPASS

Roux-en-Y gastric bypass (RYGB) has been used as a standalone reflux procedure. Mechanisms of the antireflux effect of RYGB include diverting bile from the Roux limb, promoting weight loss, lowering acid production in the gastric pouch, rapid pouch emptying, and decreasing abdominal pressure over the LES. Several studies have examined the relationship between GERD and RYGB. Studies have also analyzed symptomatic relief by using questionnaires before and after the procedure. One study has examined further the incidence of esophagitis postoperatively on endoscopy. Merrouche and colleagues showed a 6% incidence of esophagitis on endoscopy after RYGB; however, the preoperative incidence was not mentioned.

Pallati and colleagues also examined the GERD symptoms after several bariatric procedures by using the Bariatric Outcomes Longitudinal Database. GERD score improvement was highest in the RYGB group; 56.5% of patients showed improvement of symptoms. The study concluded that RYGB was superior to all other procedures in improving GERD. The proposed but unproven mechanisms included a greater weight loss and a decrease in the amount of gastric juice in the proximal pouch. The study, however, did not show any objective measures of GERD improvement. Another study by Frezza and colleagues showed a significant decrease in GERD-related symptoms over the 3-year study after laparoscopic RYGB, with decrease in reported heartburn from 87% to 22% (P<.001). The authors proposed that, in addition to volume reduction and rapid egress, the mechanism of how this procedure affects symptoms of GERD is through weight loss and elimination of acid production in the gastric pouch. The gastric pouch lacks parietal cells; thus, there is minimal to no acid production and also, owing to its small size, it minimizes any reservoir capacity to promote regurgitation.

Varban and colleagues examined the utilization of acid-reducing medications (proton pump inhibitor and H2-blockers) at 1 year after various bariatric procedures. The groups reported that at 1 year after RYGB, 56.2% of patients would discontinue an acid-reducing medication that they had been using at baseline. Interestingly, the group also showed that 19.2% of patients would also start a new acid-reducing medication after RYGB. Given the number of studies that have reported improvement in GERD symptoms after RYGB, this procedure is now widely accepted as the procedure of choice for treatment of GERD in the morbidly obese patient. Although no increased risk is conferred to patients with a body mass index of 35 kg/m2 or higher who undergo fundoplication for GERD the recommendation and practice of many surgeons is to perform a laparoscopic gastric bypass in lieu of fundoplication owing to its favorable effect on other comorbid conditions. In addition, advocates of the RYGB are promoting a conversion to an RYGB instead of a redo fundoplication.

In a recent study, Stefanidis and colleagues followed 25 patients who had previous failed fundoplication, which was taken down and converted to an RYGB. Patients were followed with the Gastrointestinal Quality of Life Index and the Gastrointestinal Symptoms Rating Sale. The revision surgery led to resolution of GERD symptoms for a majority of the patients. The authors concluded that an RYGB after a failed fundoplication has excellent symptomatic control of symptoms and excellent quality of life. However, owing to the technical challenges of the procedure and the potential for high morbidity, it should only be performed by experienced surgeons.

GERD AFTER SLEEVE GASTRECTOMY

Sleeve gastrectomy (SG), which was originally described as a first stage of the biliopancreatic diversion, is a relatively new treatment alternative for morbid obesity. It has become popular owing to its technical simplicity and its proven weight loss outcomes. Although it has many positive effects on obesity and obesity-related comorbidities, the association between GERD and SG remains controversial. Although some studies have reported improvement in GERD symptoms after SG, the majority of studies have reported an increase in GERD symptoms. The International Sleeve Gastrectomy Expert Panel reported a postoperative rate of GERD symptoms after SG in up to 31%; however, others cited increased GERD prevalence after surgery between 2.1% and 34.9%.

Studies Showing an INCREASE: Several studies have shown an increase of GERD after SG at various time points. The comparison between different studies is difficult owing to variations in the definition of GERD. Although some have utilized the use of proton pump inhibitors as a diagnostic tool, others have used the definition of typical heartburn and/or acid regurgitation occurring at least once per week. Few studies used objective data to define reflux.

Tai and colleagues examined symptoms of GERD and erosive esophagitis at 1 year after laparoscopic sleeve gastrectomy (LSG). The groups concluded that there was a significant increase in the prevalence of GERD symptoms and erosive esophagitis (P<.001), in addition to a significant increase in the prevalence of hiatal hernias (P<.001), which was higher in patients who presented with erosive esophagitis after LSG. Others have shown a similar increase of GERD at 1 year. Himpens and colleagues compared adjustable gastric banding (AGB) and SG at 1 and 3 years after procedures. GERD seemed de novo after 1 year in 8.8% and 21.8% of patients with AGB and SG, respectively. At 3 years, however, rates changed to 20.5% and 3.1% in the ABG and SG groups. Another study followed patients for more than 6 years and reported 23% to 26% of patients reporting frequent episodes of GERD. Various mechanisms have been postulated to cause symptoms of GERD after LSG. As SG alters the gastroesophageal anatomy, it has been hypothesized that the anatomic abnormalities created contribute to the development of GERD in patients.

Lazoura and colleagues showed that the final shape of the sleeve can influence the development of GERD. The group showed that patients with tubular pattern and inferior pouch (preservation of the antrum) did better in terms of regurgitation and vomiting compared with a tubular sleeve with a superior pouch. Others have also suggested the importance of antral preservation to avoid GERD development. An increase in acid production capacity can cause reflux in the case of an overly dilated sleeve, whereas impaired esophageal acid clearance can lead to reflux in a smaller sleeve. Formation of a neofundus can in an effort to avoid fistulas may also lead to development of GERD. Daes and colleagues further concentrated on describing and standardizing the procedure to reduce GERD symptoms. The authors identified 4 technical errors that led to development of GERD after the procedure: relative narrowing at the junction of the vertical and horizontal parts of the sleeve, dilation of the fundus, twisting of the sleeve, and persistence of hiatal hernia or a patulous cardia. By ensuring careful attention to surgical technique and performing a concomitant hiatal hernia repair in all patients, they reduced the rate of postoperative GERD to only 1.5%. The group concluded that hiatal hernia is the most important predisposing factor.

Studies Showing REDUCTION: Several studies have reported either decreased or no association between GERD and LSG. Interestingly, in some of these studies, GERD improvement has been reported as a secondary outcome. Rawlins and colleagues reported an improvement of symptoms in 53% of patients, but de novo GERD in 16% of patients. A multicenter prospective database review examined GERD in all 3 major bariatric procedures and reported improvement in all. The authors used medication use to define GERD. A small portion of patients reported worsening GERD, which was highest in the SG group. Sharma and colleagues also reported an improvement of GERD as assessed by symptom questionnaires, as well as improvement in grade of esophagitis on endoscopy. The possible mechanisms for improvement of GERD postoperatively are faster gastric emptying, reduction in gastric reservoir function, gastrointestinal hormonal modifications, decrease in acid secretions, and decrease in weight. Daes and colleagues reported a decrease in incidence of GERD by using a standardized operative technique and concomitant repair of hiatal hernia.

Conclusion

Owing to conflicting reports about the association between GERD and LSG, this procedure is controversial in patients with preexisting GERD. If LSG is considered in this population, hiatal hernia repair and meticulous technique are essential. We would like to emphasize the importance of preoperative testing to define the anatomy and evaluate preexisting GERD, esophagitis, Barrett’s esophagus, or the presence of hiatal hernia.

Surgical Technique of Liver Resection for the Treatment of HCC

The incidence of HCC is increasing in the worldwide. Surgery in the form of liver resection or transplantation remains the mainstay of curative treatment for HCC, even though selected patients with small tumours may also be cured with ablation. Liver resection and transplantation are not necessarily two binary choices in most patients and, despite all the debates, are often complementary treatment modalities ideally suited to different patient groups. Thus characterisation of patient and tumour characteristics to guide decision making is vital to achieve the best outcome for patients.

1.Anatomical Resection or Not?
The aim of liver resection in patients with HCC and CLD is that it should be curative with resection of tumour vascular territories and also preserve as much liver volume as possible to prevent postoperative liver failure. EASL guidelines recommend anatomical resection of HCC, whereby the lines of resection match the limits of one or more functional segments of the liver. This is based on evidence suggesting superior oncological outcomes in addition to a reduction in the risk of bleeding and biliary fistula. Although there are no randomised data, a meta-analysis including 2000 patients from 12 non-randomised comparative trials did not show any benefit of anatomical compared with non-anatomical resection in 1-, 3- and 5-year survival, recurrence rate, postoperative morbidity or blood loss . It is practice to perform an anatomical resection for tumours >2 cm, and for smaller tumours in anatomically favourable positions, a wedge with adequate margin is often sufficient. Modifying techniques to maximise parenchymal preservation preserving adequate margins are often the key in these patients.

2. Anterior Approach
The anterior approach, as described by Professor Belghiti , has been advocated for large right-sided tumours. This technique involves transection of the liver parenchyma to the IVC without mobilisation of the liver with the theoretical advantage of less tumour seeding. A prospective randomised controlled trial compared the anterior and conventional approach on 120 patients with large (>5 cm) HCCs. The anterior approach group had less blood transfusion requirements and a significantly longer overall survival (68.1 v 22.6 months; p = 0.006).

3.Parenchymal Transection
As in liver resection for other indications, there is no good evidence to indicate that a single method of parenchymal transection, application of fibrin sealants or intermittent inflow occlusion is beneficial in surgery for HCC. There is also no evidence to suggest that using special equipment for liver resection is of any benefit in decreasing the mortality, morbidity, or blood transfusion requirements. Surgeons should use techniques in which they have been trained and can demonstrate acceptable outcomes.

4. Laparoscopic Approach

Laparoscopic HCC resections are gaining popularity as the approach is more widely adopted across centres. It is important that patients for laparoscopic resection are selected based on the technical capabilities of the surgeon and centre, and the proper mentoring takes place during the learning curve. A summary of published metaanalyses concluded that the laparoscopic approach was associated with improved short-term outcomes (blood loss, complication rates and hospital length of stay) without compromising long-term oncological outcomes. It is worth noting that there are no randomised data; however a number of trials are in progress. Furthermore,their analysis suggested that the incidence of postoperative ascites and liver failure is decreased in the selected group of laparoscopic liver resections . A further metaanalysis of cirrhotic patients up to Child-Pugh B undergoing laparoscopic compared with open liver resection for HCC confirmed these perioperative benefits .

5. Robotic Approach
Although still very much in its infancy, the application of robotic surgery to HCC resection can theoretically yield similar advantages in short-term outcomes to the laparoscopic technique. The only comparative study between robotic and open liver resection for HCC included 183 patients undergoing robotic hepatectomy who were compared using propensity scoring with a cohort of 275 open resections. The robotic group required longer operating time (343 vs 220 min), shorter hospital stays (7.5 vs 10.1 days) and lower dosages of postoperative patient-controlled analgesia (350 vs 554 ng/kg). The 3-year disease-free survival of the robotic group was comparable with that of the open group (72.2% vs 58.0%; p = 0.062), as was the 3-year overall survival (92.6 vs 93.7%; p = 0.431). The associated financial costs of robotic surgery still pose a limitation to its adoption, and it is unclear if this approach is associated with any significant advantages over laparoscopic rather than open resection.

6. Associating Liver Partition with Portal Vein Ligation for Staged
Hepatectomy (ALPPS)/TAE/PVE
ALPPS is still considered an experimental technique in which a first-stage procedure consisting of physical liver splitting and portal vein ligation is followed by a second stage of resection of the HCC and associated liver segments. The advantage seen in colorectal liver metastases is that of rapid hypertrophy for the FLR. There are only limited data describing outcomes of ALPPS for HCC; however an analysis of 35 patients in the international ALPPS registry showed an impressive FLR hypertrophy of 47% following the first stage of the procedure that was associated with a 31% perioperative mortality rate. The majority of these patients were in the intermediate-stage category of the BCLC algorithm. Further evaluation is required prior to routine use of ALPPS for HCC resection, and it is the view of the authors that ALPPS may be a procedure best reserved for carefully selected patients who have bilateral disease.

7. Combined Resection with RFA for Bilobar HCC
For patients with multiple or bilobar HCC in whom resection is contraindicated due to inadequate FLR, combined resection and radiofrequency ablation (RFA) may yield better results than alternative treatments. A single-centre study compared patients with bilobar liver HCCs who underwent resection (n = 89), combination of resection and RFA (n = 114) and TACE (n = 161). The results showed that 1-, 3- and 5-year survival was better in both resection and combined resection, and RFA groups compared with TACE and survival and disease-free survival were comparable between both surgical groups. They concluded that resection combined with RFA provided a chance for cure in patients with bilobar HCC, and provided liver function is preserved, aggressive treatment can improve prognosis.

Pancreatic Surgical Anatomy

In the healthy adult, the pancreas is a soft, retroperitoneal glandular organ, lying transversely and oblique and draped over the vertebral column at the level of L1–L2 vertebrae. The bulk or volume of the pancreas varies and increases during the first 2–3 decades of life but progressively atrophies with aging. The pancreas is divided into five parts: the head, neck, body, tail, and uncinate process. The neck, head, and uncinate process are encompassed by the C-loop of the duodenum, to the anatomic right of the midline, and are in intimate relationship with the superior mesenteric vessels medially. The body extends laterally to the anatomic left, posterior to the stomach, with the tail terminating in the splenic hilum.

The organ is surrounded by a thin capsule that is loosely attached to its surface. Most of the anterior surface of the pancreas is covered with peritoneum, except where it is crossed by the root of the transverse mesocolon, as well as where there is direct contact with the first part of the duodenum and the splenic hilum. The head of the pancreas is the thickest part of the gland. Anteriorly, it is related to the origin of the transverse mesocolon. Posteriorly, the head is related to the inferior vena cava (IVC), the right gonadal vein near its entrance into the vena cava, and the right crus of the diaphragm. The common bile duct runs either on the posterior surface of the pancreatic head or is embedded within the parenchyma of the gland.

Pancreas_Anatomy

The transitional zone between the head and the body of the pancreas is termed the neck. It is defined by its anatomic location anterior to the formation of the portal vein (usually by the confluence of the superior mesenteric and splenic veins).It is approximately 2 cm wide and usually the most anteriorly located portion of the pancreas. Anteriorly the neck is covered by peritoneum and is related to the pylorus superiorly. Its posterior aspect is grooved by the superior mesenteric vein (SMV) and the portal vein (PV).

The anterior body of the pancreas is covered by the peritoneal layer that constitutes part of the posterior wall of the lesser sac. Toward the inferior border of the pancreas, the peritoneal layer is reflected anteroinferiorly to form the superior leaf of the transverse mesocolon. The posterior surface of the body lies on the fusion fascia of Toldt in the retroperitoneum, the so-called bloodless plane of Treves. The posterior body is related to the abdominal aorta and the origin of the superior mesenteric artery (SMA), the left crus of the diaphragm, the left renal vein, the left kidney, and the left adrenal gland, from right to left.

pancreas_cadaveric_dissection_ozimo_gama

The pancreas has important relationships to major blood vessels, of relevance to surgery of the pancreas. The splenic vein runs along the posterior surface of the gland in a groove of variable depth, sometimes almost entirely embedded within the pancreatic parenchyma. The celiac trunk and its branches emanate along the superior border of the body, with the common hepatic artery running to the right and the splenic artery to the left. The inferior border of the pancreas is crossed posteriorly by the inferior mesenteric vein (IMV), typically at its confluence with the splenic vein, and it serves as a useful landmark for identification of the former vessel on cross-sectional imaging.

The tail of the pancreas is the relatively mobile, left-most part of the pancreas that is confined between the layers of the splenorenal ligament together with the splenic artery and the origin of the splenic vein. It is 1.5–3.5 cm long in adults and may extend variably to the hilum of the spleen in 50% of cases and may extend posterior to vessels in the hilum. This makes the tail of the pancreas vulnerable to injury during splenectomy and needs to be visualized prior to ligating the splenic vessels. The uncinate process can be considered as a distinct part of the pancreas due to its different embryologic origin and its location extending posterior to the superior mesenteric vessels.

 It extends in the plane between the superior mesenteric vessels anteriorly and the aorta posteriorly. Superiorly, it relates to the left renal vein. It lies immediately superior to the third part of the duodenum, such that tumors arising in the uncinate process can compress the former leading to duodenal obstruction. The main pancreatic duct of Wirsung begins at the tail of the pancreas and runs through the body roughly midway between the superior and inferior border. It receives multiple small ductules throughout its course that drain the pancreatic parenchyma, thus increasing progressively in diameter from 1 mm in the tail to 3 mm in the head. It deviates inferiorly and posteriorly in the head as it courses toward the main ampulla. The pancreatic duct and bile duct are usually separated by the transampullary septum before joining in a “Y” configuration within the duodenal wall.

The terminal part of the two ducts is surrounded by a complex circular arrangement of smooth muscle fibers known as the sphincter of Oddi. The sphincter of Oddi is anatomically distinct from the muscular layers of the duodenum, and it has a dual function: (a) to regulate flow of biliary and pancreatic secretions into the duodenal lumen and (b) to impede reflux of intestinal content into the pancreatobiliary ductal system. The accessory duct of Santorini runs superior and parallel to the duct of Wirsung. It drains part of the head of the pancreas into the minor duodenal papilla, roughly 1–2 cm proximal to the ampulla of Vater. The pattern of fusion of the main and accessory ducts is variable and can be entirely separate (pancreas divisum).

Dumping Syndrome After Gastric Bypass (RYGB)

Obesity is one of the most significant health problems worldwide, and the prevalence has been increasing over the past decade. Despite improvement in the performance of bariatric surgery, complications are not uncommon. These complications vary according to baseline patient characteristics, the duration of time since the operation, and the type of bariatric surgery performed. Endoscopy is the cornerstone in the diagnosis of postoperative complications after bariatric surgery, and may even be performed in the early postoperative course. With an increasing number of patients being referred for endoscopic evaluation following bariatric surgery, it is essential to develop an understanding of the anatomic changes for optimal assessment and appropriate treatment of these patients.

Dumping_Syndrome

Early and late dumping syndrome occurs not uncommonly in patients who have undergone gastric bypass surgery when large quantities of simple carbohydrates are ingested. Early dumping typically occurs within 15 minutes of ingestion and has been attributed to rapid fluid shifts from the plasma into the bowel from hyperosmolality of the food. Late dumping occurs hours after eating and results from hyperglycemia and the subsequent insulin response leading to hypoglycemia. When hypoglycemia is severe, treatment with a low carbohydrate diet and an alphaglucosidase inhibitor may be effective. Furthermore, restoration of gastric restriction using an endoscopic approach to reduce the aperture of the GJA has also demonstrated to be effective in management of this condition.

TREATMENT 

The initial management of dumping syndrome is dietary modifications. Recommendations include consuming smaller meals by dividing daily calorie intake into six meals and delaying liquids at least 30 min after meals Rapidly absorbable simple carbohydrates should also be avoided. Adjuncts to diet modification include pectin and guar gum, which slow down gastric emptying by increasing food viscosity. Acarbose, which interferes with carbohydrate absorption in the small intestines, has also proven to relieve symptoms in small studies. After dietary modifications, medications such as somatostatin analogs (e.g., octreotide) alleviate symptoms by delaying gastric emptying and small bowel transit time, as well as inhibiting gastric hormones and insulin secretion. Multiple studies have evaluated both short- and longterm somatostatin therapies, with results showing sustained symptom control in patients refractory to dietary modifications. In severe cases refractory to medical management, surgical interventions, such as narrowing of the anastomosis, conversion of the prior bariatric surgery, and using jejunostomy parenteral feeding, may help. Follow-up with gastrointestinal specialists and the patient’s bariatric surgeon is strongly recommended if dumping syndrome is suspected.

Differential Diagnosis 

An important metabolic complication which is attracting increasing interest is postprandial hyperinsulinemic hypoglycemia (PHH), characterized by hypoglycemic symptoms developing 1–3 h after a meal accompanied by a low blood glucose level. This condition should be distinguished from early dumping syndrome where symptoms develop within minutes to 1 h after a meal of caloric dense food, caused by the rapid and unregulated emptying of food into the jejunum, which induces rapid fluid entry into the small bowel. Early dumping often occurs early in the postoperative period, most commonly after Roux-en-Y gastric bypass, whereas PHH may develop months to years after surgery.

Symptoms related to post-PHH usually develop late after surgery in contrast to early dumping. Symptoms are wide ranging, but are usually related to Whipple’s triad: symptomatic hypoglycemia, a low plasma glucose level, and resolution of symptoms after the administration of glucose. Symptoms of hypoglycemia may include anxiety, sweating, tremors, palpitations, confusion, weakness, lightheadedness, dizziness, blurred vision, disorientation, and possibly loss of consciousness.

Because of variability in degree of symptoms and the absence of a clear pathophysiology, management of this condition can be challenging. Fortunately, a significant percentage of patients with milder forms of the condition can be managed with dietary modifications consisting of frequent small meals with a low glycemic index. This requires supervision by a dietitian and long-term patient compliance. Additional benefit has been obtained by the addition of acarbose, an α glucosidase inhibitor in doses 100–300 mg. Successful management has been also reported in case reports or small case series with diazoxide, calcium channel blockers, and somatostatin analogues. The role of GLP-1 in the pathogenesis of this condition is supported by the observation that infusions of GLP-1 antagonists corrected hypoglycemia in these patients. These agents are investigational at present, but provide opportunity for additional future treatment approaches. For patients with persistent symptoms despite medical treatment, reversal of the bariatric procedure should be considered. Partial pancreatectomy, although used in the past, is now not recommended because of the significant morbidity and poor long-term symptom control. Postprandial hyperinsulinemic hypoglycemia is an important, potentially dangerous late complication of metabolic surgery. Successful diagnosis and management of this condition requires multidisciplinary specialty resources and essential long-term follow-up capabilities.

Effects of Bariatric Surgery on Diabetes

Bariatric procedures differ in their ability to ameliorate T2DM, with intestinal bypass procedures generally associated with greater glycemic control and remission rates than purely restrictive procedures. There has been until now a paucity of data from RCTs comparing the efficacy of various bariatric procedures to treat diabetes. The recently published RCT by Schauer et al. also indicates superior efficacy of RYGB over sleeve gastrectomy in the treatment of diabetes in obese individuals. On the other hand, BPD produced greater remission of diabetes in morbidly obese patients compared to RYGB (95 % versus 75 %) in the RCT reported by Mingrone et al.

Sleeve Gastrectomy as Metabolic Surgery

Karamanakos et al. showed that LSG suppressed fasting and postprandial ghrelin levels and attributed this decrease in ghrelin to improved postoperative satiety and greater weight loss at 1year compared to LRYGB. The LRYGB group in this study had an initial decrease in ghrelin levels after surgery, but these levels returned to normal levels within 3 months. Lee et al. studied the treatment of patients with a low body mass index and type 2 diabetes mellitus between the two groups. LRYGB is reportedly more effective than LSG; they conclude that both procedures have strong hindgut effects after surgery, but LRYGB has a significant duodenal exclusion effect on cholecystokinin. The LSG group had lower acylated ghrelin and des-acylated ghrelin levels but greater concentrations of resistin than the LRYGB group. In addition to evaluations of ghrelin, there are now several small studies demonstrating that gastric emptying is increased after sleeve gastrectomy. The loss of a large reservoir in the gastric fundus and body and preservation of the antral pump provide a reasonable explanation for this finding. A secondary effect of earlier distal bowel stimulation with nutrients after meals due to increased gastric emptying time may be similar to the effects seen after gastric bypass.

Several mechanistic studies have demonstrated early and exaggerated postprandial peak levels of Peptide YY3–36 and GLP-1 after LSG. GLP-1 is an incretin that stimulates insulin production and releases from pancreatic islet cells, and the increased PYY3–36 results in satiety and reduced food intake. Karamanakos et al. have independently shown that the sleeve gastrectomy does have the effect of increasing the transit time of chyme despite an intact pylorus as measured by increased postprandial PYY levels.

Peterli et al. performed a randomized prospective trial with 13 LRYGB and 14 LSG patients to investigate the potential mechanism of LSG focusing on foregut and hindgut mechanisms. They found marked improvement in glucose homeostasis 1 week after surgery in both groups. This improvement was associated with early, exaggerated increases in GLP-1 secretion at 1 week, 3 months, and 1 year postoperatively in both groups. In addition to changes in GLP-1, PYY3–36 increased significantly and ghrelin was suppressed in both groups. It is unclear whether PYY3–36 has a direct effect on glucose homeostasis or if its effects are exhibited via appetite reduction and concomitant weight loss. Preoperatively, some patients had a blunted PYY3–36 and GLP-1 response suggesting some “resistance” to these gut hormones in obese patients. These findings suggest that the LSG should not be viewed merely as a restrictive procedure but also as a procedure that has neurohormonal and incretin effects.

Gastric Bypass versus Laparoscopic Sleeve Gastrectomy

Ramon et al. compared the effects of LRYGB and LSG on glucose metabolism and levels of gastrointestinal hormones such as ghrelin, leptin, GLP-1, peptide YY (PYY), and pancreatic polypeptide (PP) in morbid obese patients. This prospective, randomized study confirmed that the postprandial response of ghrelin, GLP-1, and PYY was maintained in patients undergoing LSG for 12 months after surgery and was similar to the LRYGB group results. A prospective, randomized study by Woelnerhanssen et al. compared the 1-year results of LRYGB and LSG for weight loss, metabolic control, and fasting adipokine levels. The authors confirmed a close association of specific adipokines with obesity and with the changes observed with weight loss after two different bariatric surgical procedures. The concentrations of circulating leptin levels decreased by almost 50 % as early as 1 week postoperatively and continued to decrease until 12 months postoperatively and adiponectin increased progressively. No differences were found between the LRYGB and LSG groups regarding adipokine changes.

How to choice a procedure?

The choice of procedure is an important determinant of outcome with a decreasing gradient of efficacy predicted from BPD, RYGB to SG and then
LAGB. Other factors that have been positively correlated with diabetes remission are percentage of excess weight loss (% EWL), younger age, lower preop HbA1c, and shorter duration of diabetes (less than 5 years). Severity of diabetes, as judged by preop treatment modality, has also been noted to be a significant factor.

Schauer et al. have reported in their series of 191 obese diabetic patients (the majority of whom were on oral agents or insulin) a diabetes remission rate of 97 % in diet-controlled, 87 % in oral agent treated, and 62 % in insulin-treated subjects. This was also confirmed by a recent retrospective analysis of 505 morbidly obese diabetic patients who underwent RYGB. In this study, a more recent diagnosis of T2DM and the absence of preoperative insulin therapy were significant predictors of remission, independent of the percentage of EWL.

Dixon et al. have recently identified diabetes duration < 4 years, BMI > 35 kg/m2, and fasting c-peptide concentration > 2.9 ng/ mL as three clinically useful cutoffs and independent preoperative predictors of remission after analyzing the outcomes of 154 ethnic Chinese subjects after gastric bypass. C-peptide > 3 ng/mL has also previously been shown to be an important predictor of diabetes resolution after sleeve gastrectomy in non-morbidly obese diabetic subjects by Lee et al.

Pathophysiology of Sleeve Gastrectomy

Sleeve gastrectomy (SG), or longitudinal gastric resection, consists in a resection of the greater curvature of the stomach. In bariatric surgery, it was introduced by Hess in 1988 and by Marceau in 1990 as a component of the biliopancreatic diversion with duodenal switch (BPD/DS). Resecting the greater curvature of the stomach was aimed at reducing the risk of ulcer at the level of the duodeno-ileal anastomosis of the BPD/ DS. In fact, for those authors, the amount of stomach removed was estimated to be roughly 60% and the restriction was moderate. With a view to reducing the mortality associated with laparoscopic BPS/DS in super-super-obese patients, Regan et al. described a 60-French (F) bougiecalibrated isolated sleeve gastrectomy (ISG) as a first step in a two-stage program of laparoscopic BPD/DS in 2000. Since then, primary ISG has gained popularity in a staged surgery program for high-risk patients. Although medium- to long-term results are not known, and some technical details are still being discussed, the good short-term results obtained regarding weight loss, as well as co-morbidity and the acceptable rate of complications, have broadened the indications for primary ISG and assured its place in the armamentarium of bariatric surgical procedures. In June 2007, a position statement on SG as a bariatric procedure was endorsed by the ASMBS, and in October 2007 the First International Consensus Summit for Sleeve Gastrectomy was held in New York City. 

As expected, the operation is restrictive (satiety occurs very quickly). Indeed, with the current calibration of the sleeve, its volume is less than 10% of the entire stomach and its distensibility is 10 times less than that of the resected stomach and fundus. Nevertheless, after 6 months, patients can cope with a mug-sized meal (200 ml) of solid food. Even if the size of the meal is small, the volume of the remaining stomach is larger by far than after purely restrictive procedures (gastric banding, vertical banded gastroplasty). Melissas et al. demonstrated an accelerated gastric emptying of solid food into the duodenum and the intestine at 6 and 24 months, and this could explain some enterohormonal changes . In addition to these mechanical effects, SG has hormonal effects. This operation is “anorexigenic”; the patients feel little hunger and have only a mild interest in eating. Most of them could skip a meal each day for at least 1 year after surgery. The fundus is known to be the major source of ghrelin, an orexigenic hormone. It has been proved that the level of ghrelin is dramatically reduced after the currently performed SG with the entire fundus resected, and to a higher degree than with gastric banding or gastric bypass. Other hormonal changes have been noted, such as a rise in the level of fasting PYY or GLP1, a hormone that induces also a feeling of satiety. This latter point has yet to be assessed in human beings. These incretin modifications could play a role in the remarkable short-term effects observed on diabetes. Thus it appears that LSG is a multifactorial procedure with a mild restrictive aspect and a complex neurohormonal aspect.

ERCP Induced Perforations

In the epoch of minimally invasive management of biliary and pancreatic disorders, endoscopic retrograde cholangiopancreatography (ERCP) combined with endoscopic sphincterotomy (ES) has become a prevalent procedure all over the world. Even though ES is a safe procedure, it carries a small but significant number of serious complications which include pancreatitis, bleeding, cholangitis and perforation. As per old literature, ERCP-related perforations were reported in 0.5–2.1% of sphincterotomies with a mortality rate of 16–18%. However, the improvement in the experience and skill of the endoscopy specialists combined with advancements in technology have reduced the incidence of perforation to <0.5% over the years. Sphincterotomy (56%) and guidewire manipulation (23%) are widespread causes of perforations related to endoscopic retrograde cholangiopancreatography (ERCP). There is a dearth of evidence-based strategies with respect to the proper management of ERCP perforations. While one set of investigators promote on-demand conservative and surgical management, based on a clinical course, the others support operative repair in all cases on account of the complications associated with the delayed operative intervention.

INDICATIONS OF SURGICAL MANAGEMENT

1. Large extravasation of contrast at the time of ERCP defined as incomplete dissipation of contrast after 1 min on follow-up plain film.
2. If there is only a small amount of contrast extravasation, where there is complete dissipation after 1 min of ERCP, on follow-up plain film, then a UGI with contrast injection on fluoroscopy is performed in 2–8 h. If this shows extravasation, we recommend surgical exploration.

3. Follow-up CT scan showing a collection due to perforation in the retroperitoneum or intraperitoneum.
4. Retained hardware unable to be removed by endoscopy along with perforation.
5. Massive subcutaneous emphysema.
6. Failure of conservative management.


A delay in diagnosis or in surgery will lead to death. The reason is that there is a massive autodigestion of body tissues which is due to a constant release of enzymes, and this eventually leads to sepsis. The principle of treatment by surgery is the same as endoscopic treatment. Any case that is suspected to have ERCP-induced perforation is kept nil by mouth, and the gastric contents are decompressed by Ryles tube and intravenous antibiotics.

This is done by diverting bile, enteric and pancreatic juices away from the site of perforation. However simple drainage will also cause the juices to flow through the perforation site and body cavities before draining out of the tubes. This could be avoided by diverting the juices through well-controlled different paths which could be done by the following procedures:
1. T-tube in CBD;
2. Placement of duodenostomy tube—lateral/end duodenostomy;
3. Duodenal diverticulization;
4. Pyloric exclusion;
5. Roux-en-Y duodenojejunostomy.

The disadvantage of using Roux-en-Y duodenojejunostomy is that if the edges are inflamed, then the sutures will not hold properly. However other procedures can be used even when the edges are inflamed. Even though duodenostomy appears to be simple, a part of gastric and duodenal contents pass across the perforation site.

Duodenal diverticulization involves three things: (1) tube to divert duodenal and pancreatic juice, (2) T-tube in CBD to divert bile and (3) distal
gastrectomy and Billroth II anastomosis to provide an alternate pathway for food and gastric juice, thereby preventing these from passing through the site of perforation. Although this procedure has been proved to be successful, it is less widely used due to its complex nature. Pyloric exclusion is a simpler form in which the pylorus is closed by purse string by long-standing absorbing sutures like PDS 2.0 instead of distal gastrectomy. Similar to duodenal diverticulization, T-tube drainage of the CBD and loop gastrojejunostomy are done. The duodenal perforation is closed over a duodenostomy tube.

Whenever there is collection which is localized to the retroperitoneum, retroperitoneal surgical approach can be carried out. Advantages of this procedure are (1) it permits gravitational drainage, (2) avoids septic complication of the peritoneal cavity, (3) directs retroperitoneal necrosectomy with post-operative washes and (4) avoids complex intra-abdominal surgeries. However the disadvantage of this procedure is that it can be used only for retroperitoneal-contained perforations.

Hepatic Hemangioma: Is There an Indication for Surgical Resection?

Hepatic hemangioma (HH) is the most common benign liver tumor. It consists of blood-filled cavities fed by the hepatic arterial circulation, with walls lined by a single layer of endothelial cells, a veritable chaotic entanglement of distorted blood vessels confined to a region as small as a few mm and as large as 10 cm, 20 cm and even 40 cm. The frequency is higher among adults, with a prevalent age at the initial diagnostic in the range of 30-50 years. Literature places the HH incidence at 0.4% to 20% of the total population. At necropsy, the frequency is of 0.4 to 7.3%, all the authors agreeing with an incidence of over 7%. The HH prevalence in the general population varies greatly, most often being discovered incidentally during imaging investigations for various unrelated pathologies. Regarding sex distribution, it seems that women are more susceptible, as confirmed by all pertaining studies, with a reported 4.5:1 to 5:1 ratio of female to male cases. Most often, HH are mono-lesions but multiple-lesions are possible; they account for 2.3% and up to 20-30% of the cases, depending on the source. At the initial diagnosis, the majority of HH measure below 3 cm in size, the so-called capillary hemangiomas; of these, only 10% undergo a size increase with time, for reasons still unknown. The next size class covers lesions between 3 cm and 10 cm in size, referred to as medium hemangiomas. Lastly, giant or cavernous hemangiomas measure up to 10 cm, with occasional literature reports of giant HH reaching 20-40+ cm in size. Location-wise they are most often found in the right liver lobe, often in segment IV, often marginal.

Operative Management

Operative intervention for liver hemangiomas remains a controversial topic. Previous studies from major hepatobiliary centres have proposed varying indications for a hemangioma resection. Findings from the present study demonstrate that operative management of symptomatic hemangiomas remains an effective therapy and can be performed with low morbidity to the patient. However, aside from abdominal symptoms, prophylactic resections in the setting of hemangioma enlargement, size, or patient anxiety is not advised as the risk of developing life-threatening associated complications is rare.

Established Complications. In the minority of cases that present as a surgical emergency due to haemorrhage, rupture, thrombosis and infarction, surgical management may be the only appropriate course of action. There is also a role for the elective surgical management of giant haemangiomata, albeit in a highly selected group of patients. As demonstrated by the data presented above, an operative approach with the objective of preventing future complications of giant haemangiomata is less easy to justify.

Diagnostic Uncertainty. Despite improvements in non-invasive imaging technology, cases of diagnostic uncertainty continue to pose a challenge. In situations where it is not possible to exclude malignancy, surgical intervention by formal liver resection may be indicated. In almost all situations, the use of percutaneous liver biopsy for the differentiation of giant haemangiomata from malignant liver lesions cannot be justified. The risks of haemorrhage as a result of biopsying a giant haemangioma are appreciable and, together with the risks of needle track seeding and intra-abdominal dissemination of a potentially curable malignancy, mean that biopsy in this setting must be avoided.

Incapacitating Symptoms. Having taken all possible steps to ensure that symptoms are attributable to the haemangioma, surgical resection may be justified on grounds of intractable symptoms. Patients with clearly defined abdominal compressive symptoms may be more likely to derive benefit from surgery than patients with non-specific abdominal discomfort, although this is not backed up by a meaningful body of evidence. Management of this group of patients is, by necessity, highly individualised. Despite apparently satisfactory surgical management, symptoms persist in approximately 25% of patients following resection of seemingly symptomatic haemangiomata.

While most people with HH show no sign or symptom, and most HH are non-progressing and do not require treatment, there is a small number of cases with rapid volumetric growth or complications, which prompt for appropriate therapy. The results of clinical and laboratory investigations to date, mostly for imaging techniques, have demonstrated that for small HH, regular follow-up is enough. For cavernous HH, the evolution is unpredictable and often unfavorable, with serious complications requiring particular surgical expertise in difficult cases. Hepatic hemangiomas require a careful diagnosis to differentiate from other focal hepatic lesions, co-occurring diagnoses are also possible.

Surgical management of GASTRIC CANCER

Laparoscopic versus Open gastrectomy

Surgery is the only curative therapy for gastric cancer but most operable gastric cancer presents in a locally advanced stage characterized by tumor infiltration of the serosa or the presence of regional lymph node metastases. Surgery alone is no longer the standard treatment for locally advanced gastric cancer as the prognosis is markedly improved by perioperative chemotherapy. The decisive factor for optimum treatment is the multidisciplinary team specialized in gastric cancer. However, despite multimodal therapy and adequate surgery only 30% of gastric cancer patients are alive at 3 years.

Principles

The same principles that govern open surgery is applied to laparoscopic surgery. To ensure the same effectiveness of laparoscopic gastrectomy (LG) as conventional open gastrectomy, all the basic principles such as properly selected patients, sufficient surgical margins, standardized D2 lymphadenectomy, no-touch technique, etc., should be followed.

Indications

LG may be considered as a safe procedure with better short-term and comparable long-term oncological results compared with open gastrectomy. In addition, there is HRQL advantages to minimal access surgery. There is a general agreement that a laparoscopic approach to the treatment of gastric cancer should be chosen only by surgeons already highly skilled in gastric surgery and other advanced laparoscopic interventions. Furthermore, the first procedures should be carried out during a tutoring program. Diagnostic laparoscopy is strongly recommended as the first step of laparoscopic as well as open gastrectomies. The advantage of early recovery because of reduced surgical trauma would allow earlier commencement of adjuvant chemotherapy and the decreased hospital stay and early return to work may offset the financial costs of laparoscopic surgery.

The first description of LG was given by Kitano, Korea in 1994 and was initially indicated only for early gastric cancer patients with a low-risk lymph node metastasis. As laparoscopic experience has accumulated, the indications for LG have been broadened to patients with advanced gastric cancer. However, the role of LG remains controversial, because studies of the long-term outcomes of LG are insufficient. The Japanese Gastric Cancer Association guidelines in 2004 suggested endoscopic mucosal resection or endoscopic submucosal dissection for stage 1a (cT1N0M0) diagnosis; patients with stage 1b (cT1N1M0) and cT2N0M0) were referred for LG. Totally laparoscopic D2 radical distal gastrectomy using Billroth II anastomosis with laparoscopic linear staplers for early gastric cancer is considered to be safe and feasible. Laparoscopy-assisted total gastrectomy shows better short-term outcomes compared with open total gastrectomy in eligible patients with gastric cancer.

There was a significant reduction of intraoperative blood loss, a reduced risk of postoperative complications, and a shorter hospital stay. Western patients are relatively obese and there is an increased risk of bleeding if lymphadenectomy is performed. LG is technically difficult in the obese than in the normal weight due to reduced visibility, difficulty retracting tissues, dissection plane hindered by adipose tissue, and difficulty with anastomosis. Open gastrectomy is thus preferable for the obese. However, obesity is not a risk factor for survival of patients but it is independently predictive of postoperative complications. Careful approach is being needed, especially for male patients with high body mass index.

Robotic surgery

Robotic surgery will become an additional option in minimally invasive surgery. The importance of performing effective extended lymph node dissection may provide the advantage of using robotic systems. Such developments will improve the quality of life of patients following gastric cancer surgery. A multicenter study with a large number of patients is needed to compare the safety, efficacy, value (efficacy/cost ratio) as well as the long-term outcomes of robotic surgery, traditional laparoscopy, and the open approach.

Classroom: Surgical Management of Gastric Cancer

Principles of Surgical Resection of Hepatocellular Carcinoma

INTRODUCTION

There has been significant improvement in the perioperative results following liver resection, mainly due to techniques that help reduce blood loss during the operation. Extent of liver resection required in HCC for optimal oncologic results is still controversial. On this basis, the rationale for anatomically removing the entire segment or lobe bearing the tumor, would be to remove undetectable tumor metastases along with the primary tumor.

SIZE OF TUMOR VERSUS TUMOR FREE-MARGIN

Several retrospective studies and meta-analyses have shown that anatomical resections are safe in patients with HCC and liver dysfunction, and may offer a survival benefit. It should be noted, that most studies are biased, as non-anatomical resections are more commonly performed in patients with more advanced liver disease, which affects both recurrence and survival. It therefore remains unclear whether anatomical resections have a true long-term survival benefit in patients with HCC. Some authors have suggested that anatomical resections may provide a survival benefit in tumors between 2 and 5 cm. The rational is that smaller tumors rarely involve portal structures, and in larger tumors presence of macrovascular invasion and satellite nodules would offset the effect of aggressive surgical approach. Another important predictor of local recurrence is margin status. Generally, a tumor-free margin of 1 cm is considered necessary for optimal oncologic results. A prospective randomized trial on 169 patients with solitary HCC demonstrated that a resection margin aiming at 2 cm, safely decreased recurrence rate and improved long-term survival, when compared to a resection margin aiming at 1 cm. Therefore, wide resection margins of 2 cm is recommended, provided patient safety is not compromised.

THECNICAL ASPECTS 

Intraoperative ultrasound (IOUS) is an extremely important tool when performing liver resections, specifically for patients with HCC and compromised liver function. IOUS allows for localization of the primary tumor, detection of additional tumors, satellite nodules, tumor thrombus, and define relationship with bilio-vascular structures within the liver. Finally, intraoperative US-guided injection of dye, such as methylene-blue, to portal branches can clearly define the margins of the segment supplied by the portal branch and facilitate safe anatomical resection.

Resultado de imagem para intraoperative ultrasound liver

The anterior approach to liver resection is a technique aimed at limiting tumor manipulation to avoid tumoral dissemination, decrease potential for blood loss caused by avulsion of hepatic veins, and decrease ischemia of the remnant liver caused by rotation of the hepatoduodenal ligament. This technique is described for large HCCs located in the right lobe, and was shown in a prospective, randomized trial to reduce frequency of massive bleeding, number of patients requiring blood transfusions, and improve overall survival in this setting. This approach can be challenging, and can be facilitated by the use of the hanging maneuver.

Imagem relacionada

Multiple studies have demonstrated that blood loss and blood transfusion administration are significantly associated with both short-term perioperative, and long-term oncological results in patients undergoing resection for HCC. This has led surgeons to focus on limiting operative blood loss as a major objective in liver resection. Transfusion rates of <20 % are expected in most experienced liver surgery centers. Inflow occlusion, by the use of the Pringle Maneuver represents the most commonly performed method to limit blood loss. Cirrhotic patients can tolerate total clamping time of up to 90 min, and the benefit of reduced blood loss outweighs the risks of inflow occlusion, as long as ischemia periods of 15 min are separated by at least 5 min of reperfusion. Total ischemia time of above 120 min may be associated with postoperative liver dysfunction. Additional techniques aimed at reducing blood loss include total vascular isolation, by occluding the inferior vena cava (IVC) above and below the liver, however, the hemodynamic results of IVC occlusion may be significant, and this technique has a role mainly in tumors that are adjacent to the IVC or hepatic veins.

Resultado de imagem para anesthesiology

Anesthesiologists need to assure central venous pressure is low (below 5 mmHg) by limiting fluid administration, and use of diuretics, even at the expense 470 N. Lubezky et al. of low systemic pressure and use of inotropes. After completion of the resection, large amount of crystalloids can be administered to replenish losses during parenchymal dissection.

LAPAROSCOPIC RESECTIONS 

Laparoscopic liver resections were shown to provide benefits of reduced surgical trauma, including a reduction in postoperative pain, incision-related morbidity, and shorten hospital stay. Some studies have demonstrated reduced operative bleeding with laparoscopy, attributed to the increased intra-abdominal pressure which reduces bleeding from the low-pressured hepatic veins. Additional potential benefits include a decrease in postoperative ascites and ascites-related wound complications, and fewer postoperative adhesions, which may be important in patients undergoing salvage liver transplantation. There has been a delay with the use of laparoscopy in the setting of liver cirrhosis, due to difficulties with hemostasis in the resection planes, and concerns for possible reduction of portal flow secondary to increased intraabdominal pressure. However, several recent studies have suggested that laparoscopic resection of HCC in patients with cirrhosis is safe and provides improved outcomes when compared to open resections.

Resultado de imagem para laparoscopic liver resection

Resections of small HCCs in anterior or left lateral segments are most amenable for laparoscopic resections. Larger resections, and resection of posterior-sector tumors are more challenging and should only be performed by very experienced surgeons. Long-term oncological outcomes of laparoscopic resections was shown to be equivalent to open resections on retrospective studies , but prospective studies are needed to confirm these findings. In recent years, robotic-assisted liver resections are being explored. Feasibility and safety of robotic-assisted surgery for HCC has been demonstrated in small non-randomized studies, but more experience is needed, and long-term oncologic results need to be studied, before widespread use of this technique will be recommended.

ALPPS: Associating Liver Partition with Portal vein ligation for Staged hepatectomy

Resultado de imagem para Associating Liver Partition with Portal vein ligation for Staged hepatectomy
The pre-operative options for inducing atrophy of the resected part and hypertrophy of the FLR, mainly PVE, were described earlier. Associating Liver Partition with Portal vein ligation for Staged hepatectomy (ALPPS) is another surgical option aimed to induce rapid hypertrophy of the FLR in patients with HCC. This technique involves a 2-stage procedure. In the first stage splitting of the liver along the resection plane and ligation of the portal vein is performed, and in the second stage, performed at least 2 weeks following the first stage, completion of the resection is performed. Patient safety is a major concern, and some studies have reported increased morbidity and mortality with the procedure. Few reports exist of this procedure in the setting of liver cirrhosis. Currently, the role of ALPPS in the setting of HCC and liver dysfunction needs to be better delineated before more widespread use is recommended.

Clinical Anatomy of the Liver

Resultado de imagem para Clinical Anatomy of the Liver


Understanding the intrahepatic anatomy is crucial to perform liver resections and, in particular, parenchymal-sparing resections. The Couinaud’s liver segmentation system is based on the identification of the three hepatic veins and the plane passing by the portal vein bifurcation. Nowadays, Couinaud’s classification is widely used clinically, because it is best adapted for surgery and has become essential in localizing and monitoring various intrahepatic lesions.

As above-mentioned, Couinaud’s portal segmentation is entirely different from the historically defined two hemilivers based on external landmarks and is also partially different from Healey’s arteriobiliary segmen-tation. According to Couinaud’s descriptions, the right, middle and left hepatic veins divide the liver into four sectors (called suprahepatic segmentation by Couinaud), each of which is supplied by a portal pedicle that consists of a branch of the hepatic artery, portal vein and bile duct.

Imagem relacionada

The middle hepatic vein runs in the main portal scissura (midplane of the liver) which separates the liver into the right and the left hemiliver. The main portal scissura moves forward from the gallbladder fossa anteriorly to the left of the suprahepatic IVC posteriorly, and in clinical practice, these external landmarks may be used as external demarcation line between the functional right and left hemiliver. Both the right and left hemilivers are further separated into sectors by the right and left portal scissura holding the right and left hepatic veins separately.

In the right hemiliver, the right portal scissura divides the right hemiliver into the right anterior sector (right paramedian sector) and the right posterior sector (right lateral sector). It is noteworthy that in the right hemiliver, Healey’s liver sections which he defined as segments are accurately the same as Couinaud’s sectors. In the left hemiliver, the left portal scissura divides the left liver into the anterior sector (left medial sector or left paramedian sector) and the posterior sector (left posterior sector or left lateral sector).

The anterior sector consists of segments 4 and 3, and the posterior sector only includes segment 2. However, in the left hemiliver, Healey’s liver sections which he defined as segments are not the same as Couinaud’s sectors. In the right hemiliver, as Healey’s sections are precisely the same as Couinaud’s sectors, the right anterior sector (section) can be further subdivided into segment 8 superiorly and segment 5 inferiorly. The right posterior sector (Healey’s section) is also further subdivided into segment 7 superiorly and segment 6 inferiorly.

In the left hemiliver, Healey’s sections are not the same as Couinaud’s sectors. The Healey’s left medial section locates between the main portal scissura and the falciform ligament, and it is comprised only of segment 4, which can further be subdivided into segment 4A superiorly and segment 4B inferiorly, while the Healey’s left lateral section is comprised of segments 2 and 3, being divided by the left hepatic vein which runs in the left portal scissura.

Resultado de imagem para liver segmentation

For the Couinaud’s left medial sector, it is comprised of segments 3 and 4, locating between the middle hepatic vein running in the main portal scissura and the left hepatic vein running in the left portal scissura. The falciform ligament and the umbilical fissure separate segment 4 from segment 3. The Couinaud’s left lateral sector, which is located within the left territory of the left hepatic vein, is comprised only of segment 2. The caudate lobe is defined as segment 1 in both the Couinaud’s portal and the Healey’s arteriobiliary segmentation systems. This segment is surrounded by the major vascular structures, with the retrohepatic posteriorly, the main portal pedicle inferiorly and the hepatocaval confluence superiorly. Its inflow vasculature originates from both the right and the left portal pedicles, and its biliary drainage exists as a similar pattern. Its venous drainage directly enters into the retrohepatic IVC.

 

Pringle Maneuver

Resultado de imagem para pringle maneuver


After the first major hepatic resection, a left hepatic resection, carried out in 1888 by Carl Langenbuch, it took another 20 years before the first right hepatectomy was described by Walter Wendel in 1911. Three years before, in 1908, Hogarth Pringle provided the first description of a technique of  vascular control, the portal triad clamping, nowadays known as the Pringle maneuver. Liver surgery has progressed rapidly since then. Modern surgical concepts and techniques, together with advances in anesthesiological care, intensive care medicine, perioperative imaging, and interventional radiology, together with multimodal oncological concepts, have resulted in fundamental changes. Perioperative outcome has improved significantly, and even major hepatic resections can be performed with morbidity and mortality rates of less than 45% and 4% respectively in highvolume liver surgery centers. Many liver surgeries performed routinely in specialized centers today were considered to be high-risk or nonresectable by most surgeons less than 1–2 decades ago.Interestingly, operative blood loss remains the most important predictor of postoperative morbidity and mortality, and therefore vascular control remains one of the most important aspects in liver surgery.

“Bleeding control is achieved by vascular control and optimized and careful parenchymal transection during liver surgery, and these two concepts are cross-linked.”

First described by Pringle in 1908, it has proven effective in decreasing haemorrhage during the resection of the liver tissue. It is frequently used, and it consists in temporarily occluding the hepatic artery and the portal vein, thus limiting the flow of blood into the liver, although this also results in an increased venous pressure in the mesenteric territory. Hemodynamic repercussion during the PM is rare because it only diminishes the venous return in 15% of cases. The cardiovascular system slightly increases the systemic vascular resistance as a compensatory response, thereby limiting the drop in the arterial pressure. Through the administration of crystalloids, it is possible to maintain hemodynamic stability.

Resultado de imagem para Methods of vascular control in hepatic resections

In the 1990s, the PM was used continuously for 45 min and even up to an hour because the depth of the potential damage that could occur due to hepatic ischemia was not yet known. During the PM, the lack of oxygen affects all liver cells, especially Kupffer cells which represent the largest fixed macrophage mass. When these cells are deprived of oxygen, they are an endless source of production of the tumour necrosis factor (TNF) and interleukins 1, 6, 8 and 10. IL 6 has been described as the cytokine that best correlates to postoperative complications. In order to mitigate the effects of continuous PM, intermittent clamping of the portal pedicle has been developed. This consists of occluding the pedicle for 15 min, removing the clamps for 5 min, and then starting the manoeuvre again. This intermittent passage of the hepatic tissue through ischemia and reperfusion shows the development of hepatic tolerance to the lack of oxygen with decreased cell damage. Greater ischemic tolerance to this intermittent manoeuvre increases the total time it can be used.

Management of gallbladder cancer

Resultado de imagem para gallbladder cancer


Gallbladder cancer is uncommon disease, although it is not rare. Indeed, gallbladder cancer is the fifth most common gastrointestinal cancer and the most common biliary tract cancer in the United States. The incidence is 1.2 per 100,000 persons per year. It has historically been considered as an incu-rable malignancy with a dismal prognosis due to its propensity for early in-vasion to liver and dissemination to lymph nodes and peritoneal surfaces. Patients with gallbladder cancer usually present in one of three ways: (1) advanced unresectable cancer; (2) detection of suspicious lesion preoperatively and resectable after staging work-up; (3) incidental finding of cancer during or after cholecystectomy for benign disease.

SURGICAL MANAGEMENT

Although, many studies have suggested improved survival in patients with early gallbladder cancer with radical surgery including en bloc resection of gallbladder fossa and regional lymphadenectomy, its role for those with advanced gallbladder cancer remains controversial. First, patients with more advanced disease often require more extensive resections than early stage tumors, and operative morbidity and mortality rates are higher. Second, the long-term outcomes after resection, in general, tend to be poorer; long-term survival after radical surgery has been reported only for patients with limited local and lymph node spread. Therefore, the indication of radical surgery should be limited to well-selected patients based on thorough preoperative and intra-operative staging and the extent of surgery should be determined based on the area of tumor involvement. 

Surgical resection is warranted only for those who with locoregional disease without distant spread. Because of the limited sensitivity of current imaging modalities to detect metastatic lesions of gallbladder cancer, staging laparoscopy prior to proceeding to laparotomy is very useful to assess the
abdomen for evidence of discontinuous liver disease or peritoneal metastasis and to avoid unnecessary laparotomy. Weber et al. reported that 48% of patients with potentially resectable gallbladder cancer on preoperative imaging work-up were spared laparotomy by discovering unresectable disease by laparoscopy. Laparoscopic cholecystectomy should be avoided when a preoperative cancer is suspected because of the risk of violation of the plane between tumor and liver and the risk of port site seeding.

The goal of resection should always be complete extirpation with microscopic negative margins. Tumors beyond T2 are not cured by simple cholecystectomy and as with most of early gallbladder cancer, hepatic resection is always required. The extent of liver resection required depends upon whether involvement of major hepatic vessels, varies from segmental resection of segments IVb and V, at minimum to formal right hemihepatectomy or even right trisectionectomy. The right portal pedicle is at particular risk for advanced tumor located at the neck of gallbladder, and when such involvement is suspected, right hepatectomy is required. Bile duct resection and reconstruction is also required if tumor involved in bile duct. However, bile duct resection is associated with increased perioperative morbidity and it should be performed only if it is necessary to clear tumor; bile duct resection does not necessarily increase the lymph node yield. 

Hepatic Surgery: Portal Vein Embolization

An external file that holds a picture, illustration, etc.
Object name is ol-15-02-1411-g00.jpg


INTRODUCTION

Portal vein Embolizations (PVE) is commonly used in the patients requiring extensive liver resection but have insufficient Future Liver Remanescent (FLR) volume on preoperative testing. The procedure involves occluding portal venous flow to the side of the liver with the lesion thereby redirecting portal flow to the contralateral side, in an attempt to cause hypertrophy and increase the volume of the FLR prior to hepatectomy.

Resultado de imagem para Makuuchi

PVE was first described by Kinoshita and later reported by Makuuchi as a technique to facilitate hepatic resection of hilar cholangiocarcinoma. The technique is now widely used by surgeons all over the world to optimize FLR volume before major liver resections.

PHYSIOPATHOLOGY

PVE works because the extrahepatic factors that induce liver hypertrophy are carried primarily by the portal vein and not the hepatic artery. The increase in FLR size seen after PVE is due to both clonal expansion and cellular hypertrophy, and the extent of post-embolization liver growth is generally proportional to the degree of portal flow diversion. The mechanism of liver regeneration after PVE is a complex phenomenon and is not fully understood. Although the exact trigger of liver regeneration remains unknown, several studies have identified periportal inflammation in the embolized liver as an important predictor of liver regeneration.

Imagem relacionada

THECNICAL ASPECTS

PVE is technically feasible in 99% of the patients with low risk of complications. Studies have shown the FLR to increase by a median of 40–62% after a median of 34–37 days after PVE, and 72.2–80% of the patients are able to undergo resection as planned. It is generally indicated for patients being considered for right or extended right hepatectomy in the setting of a relatively small FLR. It is rarely required before extended left hepatectomy or left trisectionectomy, since the right posterior section (segments 6 and 7) comprises about 30% of total liver volume.

PVE is usually performed through percutaneous transhepatic access to the portal venous system, but there is considerable variability in technique between centers. The access route can be ipsilateral (portal access at the same side being resected) with retrograde embolization or contralateral (portal access through FLR) with antegrade embolization. The type of approach selected depends on a number of factors including operator preference, anatomic variability, type of resection planned, extent of embolization, and type of embolic agent used. Many authors prefer ipsilateral approach especially for right-sided tumors as this technique allows easy catheterization of segment 4 branches when they must be embolized and also minimizes the theoretic risk of injuring the FLR vasculature or bile ducts through a contralateral approach and potentially making a patient ineligible for surgery. 

However, majority of the studies on contralateral PVE show it to be a safe technique with low complication rate. Di Stefano et al. reported a large series of contralateral PVE in 188 patients and described 12 complications (6.4%) only 6 of which could be related to access route and none precluded liver resection. Site of portal vein access can also change depending on the choice of embolic material selected which can include glue, Gelfoam, n-butyl-cyanoacrylate (NBC), different types and sizes of beads, alcohol, and nitinol plus. All agents have similar efficacy and there are no official recommendations for a particular type of agent.

RESULTS

Proponents of PVE believe that there should be very little or no tumor progression during the 4–6 week wait period for regeneration after PVE. Rapid growth of the FLR can be expected within the first 3–4 weeks after PVE and can continue till 6–8 weeks. Results from multiple studies suggest that 8–30% hypertrophy over 2–6 weeks can be expected with slower rates in cirrhotic patients. Most studies comparing outcomes after major hepatectomy with and without preoperative PVE report superior outcomes with PVE. Farges et al. demonstrated significantly less risk of postoperative complications, duration of intensive care unit, and hospital stay in patients with cirrhosis who underwent right hepatectomy after PVE compared to those who did not have preoperative PVE. The authors also reported no benefit of PVE in patients with a normal liver and FLR >30%. Abulkhir et al. reported results from a meta-analysis of 1088 patients undergoing PVE and showed a markedly lower incidence of Post Hepatectomy Liver Failure (PHLF) and death compared to series reporting outcomes after major hepatectomy in patients who did not undergo PVE. All patients had FLR volume increase, and 85% went on to have liver resection after PVE with a PHLF incidence of 2.5% and a surgical mortality of 0.8%. Several studies looking at the effect of systemic neoadjuvant chemotherapy on the degree of hypertrophy after PVE show no significant impact on liver regeneration and growth.

VOLUMETRIC RESPONSE

The volumetric response to PVE is also a very important factor in understanding the regenerative capacity of a patient’s liver and when used together with FLR volume can help identify patients at risk of poor postsurgical outcome. Ribero et al. demonstrated that the risk of PHLF was significantly higher not only in patients with FLR 20% but also in patients with normal liver who demonstrated 5% of FLR hypertrophy after PVE. The authors concluded that the degree of hypertrophy >10% in patients with severe underlying liver disease and >5% in patients with normal liver predicts a low risk of PHLF and post-resection mortality. Many authors do not routinely offer resection to patients with borderline FLR who demonstrate 5% hypertrophy after PVE.

Predicting LIVER REMNANT Function


Careful analysis of outcome based on liver remnant volume stratified by underlying liver disease has led to recommendations regarding the safe limits of resection. The liver remnant to be left after resection is termed the future liver remnant (FLR). For patients with normal underlying liver, complications, extended hospital stay, admission to the intensive care unit, and hepatic insufficiency are rare when the standardized FLR is >20% of the TLV. For patients with tumor-related cholestasis or marked underlying liver disease, a 40% liver remnant is necessary to avoid cholestasis, fluid retention, and liver failure. Among patients who have been treated with preoperative systemic chemotherapy for more than 12 weeks, FLR >30% reduces the rate of postoperative liver insufficiency and subsequent mortality.

Future_Liver_Remnant_Ozimo_Gama

When the liver remnant is normal or has only mild disease, the volume of liver remnant can be measured directly and accurately with threedimensional computed tomography (CT) volumetry. However, inaccuracy may arise because the liver to be resected is often diseased, particularly in patients with cirrhosis or biliary obstruction. When multiple or large tumors occupy a large volume of the liver to be resected, subtracting tumor volumes from liver volume further decreases accuracy of CT volumetry. The calculated TLV, which has been derived from the association between body surface area (BSA) and liver size, provides a standard estimate of the TLV. The following formula is used:

TLV (cm3) = –794.41 + 1267.28 × BSA (square meters)

Thus, the standardized FLR (sFLR) volume calculation uses the measured FLR volume from CT volumetry as the numerator and the calculated TLV as the denominator: Standardized FLR (sFLR) = measured FLR volume/TLV Calculating the standardized TLV corrects the actual liver volume to the individual patient’s size and provides an individualized estimate of that patient’s postresection liver function. In the event of an inadequate FLR prior to major hepatectomy, preoperative liver preparation may include portal vein embolization (PVE). 

Classroom: Principles of Hepatic Surgery

Videos of Surgical Procedures

Resultado de imagem para videos of surgical procedures

This page provides links to prerecorded webcasts of surgical procedures. These are actual operations performed at medical centers in the Brazil. Please note that you cannot send in questions by email, though the webcast may say that you can, because you are not seeing these videos live. The videos open in a second window. If you have a pop-up blocker, you will need to disable it to view the programs.

Videos of Surgical Procedures

Surgical Management of Cholangiocarcinoma

Resultado de imagem para Cholangiocarcinoma

Cholangiocarcinoma (CCA) is a rare but lethal cancer arising from the bile duct epithelium. As a whole, CCA accounts for approximately 3 % of all gastrointestinal cancers. It is an aggressive disease with a high mortality rate. Unfortunately, a significant proportion of patients with CCA present with either unresectable or metastatic disease. In a retrospective review of 225 patients with hilar cholangiocarcinoma, Jarnagin et al. reported that 29 % of patients had either unresectable disease were unfit for surgery. Curative resection offers the best chance for longterm survival. Whereas palliation with surgical bypass was once the preferred surgical procedure even for resectable disease, aggressive surgical resection is now the standard.

Classroom: Surgical Management of Cholangiocarcinoma

Strangulation in GROIN HERNIAS

Importance 

In both the UK and the USA the annual death rate due to inguinal and femoral hernia has decreased in the last two to three decades. In the UK, deaths for inguinal and femoral hernia declined from 22 to 55% respectively from 1975 to 1990. The annual deaths in the USA per 100,000 population for patients with hernia and intestinal obstruction decreased from 5.1 in 1968 to 3.0 in 1988. For inguinal hernia with obstruction, 88% of patients underwent surgery with a mortality rate of 0.05%. These figures could be interpreted as showing that elective groin hernia surgery has reduced overall mortality rates.

In support of this contention is the fact that strangulation rates are lower in the USA than in the UK, which could be a consequence of the three times higher rate of elective hernia surgery in the USA. Even so, the available statistics show that rates of elective hernia surgery in the USA per 100,000 population fell from 358 to 220 between 1975 and 1990, although this may be an artifact of the data collection systems rather than a real decline.

During the period 1991–1992, 210 deaths occurring following inguinal hernia repair and 120 deaths following femoral hernia repair were investigated by the UK National Confidential Enquiry Into Perioperative Deaths. This enquiry is concerned with the quality of delivery of surgery, anesthesia, and perioperative care. Expert advisers compare the records of patients who have died with index cases. In this group of 330 patients many were elderly (45 were aged 80–89 years) and significantly infirm unfit; 24 were ASA grade III and 21 ASA grade IV. Postoperative mortality was attributed to preexisting cardiorespiratory problems in the majority of cases. In a nationwide study in Denmark of 158 patients dying after acute groin hernia repair, Kjaergaard et al. also found that these patients were old (median age 83 years) and fragile (>80% with significant comorbidity), with frequent delay in diagnosis and subsequent treatment. Clearly this group of patients requires high-quality care by an experienced surgeon and anesthetist with skills equivalent to that of the ASA grade of the patient.

Postoperative care should necessarily take place in a high-dependency unit or intensive therapy unit; this may necessitate transfer of selected patients to appropriate hospitals and facilities. Sensible decisions must be made in consultation with relatives of extremely elderly, frail, or moribund patients to adopt a humane approach, which may rule out interventional surgery.

Forty percent of patients with femoral hernia are admitted as emergency cases with strangulation or incarceration, whereas only 3% of patients with direct inguinal hernias present with strangulation. This clearly has implications for the prioritization on waiting lists when these types of hernia present electively to outpatient clinics. A groin hernia is at its greatest risk of strangulation within 3 months of its onset. For inguinal hernia at 3 months after presentation, the cumulative probability of strangulation is 2.8%, rising to 4.5% after 2 years. For femoral hernia the risk is much higher, with a 22% probability of strangulation at 3 months after presentation rising to 45% at 21 months. Right-sided hernias strangulate more frequently than left-sided hernias; this is possibly related to mesenteric anatomy.

Evidence-Based Medicine 

In a randomized trial, evaluating an expectative approach to minimally symptomatic inguinal hernias, Fitzgibbons et al. in the group of patients randomized to watchful waiting found a risk of an acute hernia episode of 1.8 in 1,000 patient years. In another trial, O’Dwyer and colleagues, randomizing patients with painless inguinal hernias to observation or operation, found two acute episodes in 80 patients randomized to observation. In both studies, a large percentage of patients randomized to nonoperative care were eventually operated due to symptoms. Neuhauser, who studied a population in Columbia where elective herniorrhaphy was virtually unobtainable, found an annual rate of strangulation of 0.29% for inguinal hernias.

Management of Strangulation

Diagnosis is based on symptoms and signs supplemented by diagnostic imaging when indicated. Pain over the hernia site is invariable, and obstruction with strangulation of intestine will cause colicky abdominal pain, distension, vomiting, and constipation. Physical examination may reveal degrees of dehydration with or without CNS depression, especially in the elderly if uremia is present, together with abdominal signs of intestinal obstruction. Femoral hernias can be easily missed, especially in the obese female, and a thorough examination should be performed in order to make the correct diagnosis. Frequently, however, physical examination alone is insuf fi ciently accurate to con fi rm the presence of a strangulating femoral hernia vs. lymphadenopathy vs. a lymph node abscess. In these instances, one may elect to perform radiographic studies such as an ultrasound or a CT scan on an urgent or emergent basis.

The choice of incision will depend on the type hernia if the diagnosis is confi dent. When the diagnosis is in doubt, a half Pfannenstiel incision 2 cm above the pubic ramus, extending laterally, will give an adequate approach to all types of femoral or inguinal hernia. The fundus of the hernia sac can then be approached and exposed and an incision made to expose the contents of the sac. This will allow determination of the viability of its contents. Nonviability will necessitate conversion of the transverse incision into a laparotomy incision followed by release of the constricting hernia ring, reduction of the contents of the sac, resection, and reanastomosis. Precautions should be taken to avoid contamination of the general peritoneal cavity by gangrenous bowel or intestinal contents. In the majority of cases, once the constriction of the hernia ring has been released, circulation to the intestine is reestablished and viability returns. Intestine that is initially dusky, aperistaltic, or dull in hue may pink up with a short period of warming with damp packs once the constriction band is released. If viability is doubtful, resection should be performed. Resection rates are highest for femoral or recurrent inguinal hernias and lowest for inguinal hernias. Other organs, such as bladder or omentum, should be resected, as the need requires. After peritoneal lavage and formal closure of the laparotomy incision, specific repair of the groin hernia defect should be performed. In this situation prosthetic mesh should not be used in an operative fi eld that has been contaminated and in which there is a relatively high risk of wound infection. The hernia repair should follow the general principles for elective hernia repair. It should be kept in mind, that in this group of predominantly frail and elderly patients with a very high postoperative mortality risk, the primary objective of the operation is to stop the vicious cycle of strangulation, and only secondary to repair the hernia defect.

Key Point

The risk of an acute groin hernia episode is of particular relevance, when discussing indication for operation of painless or minimally symptomatic hernias. A sensible approach in groin hernias would be, in accordance with the guidelines from the European Hernia Society to advise a male patient, that the risk of an acute operation, with an easily reducible (“disappears when lying down”) inguinal hernia with little or no symptoms, is low and that the indication for operation in this instance is not absolute, but also inform, that usually the hernia after some time will cause symptoms, eventually leading to an operation. In contrast, female patients with a groin hernia, due to the high frequency of femoral hernias and a relatively high risk of acute hernia episodes, should usually be recommended an operation.

Abdominal Surgical Anatomy

Human_Anatomy_Ozimo_Gama


The abdomen is the lower part of the trunk below the diaphragm. Its walls surround a large cavity called the abdominal cavity. The abdominal cavity is much more extensive than what it appears from the outside. It extends upward deep to the costal margin up to the diaphragm and downward within the bony pelvis. Thus, a considerable part of the abdominal cavity is overlapped by the lower part of the thoracic cage above and by the bony pelvis below. The abdominal cavity is subdivided by the plane of the pelvic inlet into a larger upper part, i.e., the abdominal cavity proper, and a smaller lower part, i.e., the pelvic cavity. Clinically the importance of the abdomen is manifold. To the physician, the physical examination of the patient is never complete until he/she thoroughly examines the abdomen. To the surgeon, the abdomen remains an enigma because in number of cases the cause of abdominal pain and nature of abdominal lump remains inconclusive even after all possible investigations. To summarize, many branches of medicine such as general surgery and gastroenterology are all confined to the abdomen.

Classroom: Abdominal Surgical Anatomy

Minimally Invasive Approach to Choledocholithiasis

Introduction

The incidence of choledocholithiasis in patients undergoing cholecystectomy is estimated to be 10 %. The presence of common bile duct stones is associated with several known complications including cholangitis, gallstone pancreatitis, obstructive jaundice, and hepatic abscess. Making the diagnosis early and prompt management is crucial. Traditionally, when choledocholithiasis is identified with intraoperative cholangiography during the cholecystectomy, it has been managed surgically by open choledochotomy and place- ment of a T-tube. This open surgical approach has a morbidity rate of 10–15 %, mortality rate of <1 %, with a <6 % incidence of retained stones. Patients who fail endoscopic retrieval of CBD stones, as well as cases in which an endoscopic approach is not appropriate, should be explored surgically.

Clinical Manifestation

Acute obstruction of the bile duct by a stone causes a rapid distension of the biliary tree and activation of local pain fibers. Pain is the most common presenting symptom for choledocholithiasis and is localized to either the right upper quadrant or to the epigastrium. The obstruction will also cause bile stasis which is a risk factor for bacterial over- growth. The bacteria may originate from the duodenum or the stone itself. The combination of biliary obstruction and colo- nization of the biliary tree will lead to the development of fevers, the second most common presenting symptom of cho- ledocholithiasis. Biliary obstruction, if unrelieved, will lead to jaundice. When these three symptoms (pain, fever, and jaundice) are found simultaneously, it is known as Charcot’s triad. This triad suggests the diagnosis of acute ascending cholangitis, a potentially life-threatening condition. If not treated promptly, this can lead to hypotension and decreased metal status, both signs of severe sepsis. When combined with Charcot’s triad, this constellation of symptoms is commonly referred to as Reynolds pentad.

Laparoscopic common bile duct exploration

Laparoscopic common bile duct exploration (LCBDE) allows for single stage treatment of gallstone disease, reducing overall hospital stay, improving safety and cost-effectiveness when compared to the two-stage approach of ERCP and laparoscopic cholecystectomy. Bile duct clearance can be confirmed by direct visualization with a choledochoscope. But, before the advent of choledochoscope, bile duct clearance was uncertain, and blind instrumentation of the duct resulted in accentuated edema and inflammation. Due to advancement in instruments, optical magnification, and direct visualization, laparoscopic exploration of the CBD results in fewer traumas to the bile duct. This has led to an increasing tendency to close the duct primarily, reducing the need for placement of T-tubes. Still, laparoscopic bile duct exploration is being done in only a few centers. Apart from the need for special instruments, there is also a significant learning curve to acquire expertise to be able to perform a laparoscopic bile duct surgery.

Morbidity and mortality rates of laparoscopic exploration are comparable to ERCP (2–17 and 1–5 %), and there is no clear difference in primary success rates between the two approaches. However, the endoscopic approach may be preferable for elderly and frail patients, who are at higher risk with surgery. Patients older than 70–80 years of age have a 4–10 % mortality rate with open duct exploration. It may be as high as 20 % in elderly patients undergoing urgent procedures. In comparison, advanced age and comor- bidities do not have a significant impact on overall complication rates for ERCP. A success rate of over 90 % has been reported with laparoscopic CBD exploration. Availability of surgical expertise and appropriate equipment affect the success rate of laparoscopic exploration, as does the size, number of the CBD stones, as well as biliary anatomy. Over the years, laparoscopic exploration has become efficient, safe, and cost effective. Complications include CBD laceration, stricture formation, bile leak, abscess, pancreatitis, and retained stones.

In cases of failure of laparoscopic CBD exploration, a guidewire or stent can be passed through the cystic duct, common bile duct, and through the ampulla into the duodenum followed by cholecystectomy. This makes the identification and cannulation of the ampulla easier during the post- operative ERCP. Laparoscopic common bile duct exploration is traditionally performed through a transcystic or transductal approach. The transcystic approach is appropriate under certain circumstances. These include a small stone (<10 mm) located in the CBD, presence of small common bile duct (<6 mm), or if there is poor access to the common duct. The transductal approach is preferable in cases of large stones, stones in proximal ducts (hepatic ducts), large occluding stones in a large duct, presence of multiple stones, or if the cystic duct is small (<4 mm) or tortuous. Contraindications for laparoscopic approach include lack of training, and severe inflammation in the porta hepatis making the exploration difficult and risky.

Key Points

With advancement in imaging technology, laparoscopic and endoscopic techniques, management of common bile duct stone has changed drasti- cally in recent years. This has made the treatment of this condition safe and more efficient. Many options are now available to manage this condition, and any particular modality for treatment should be chosen carefully based on the patient related factors, institutional protocol, available expertise, resources, and cost-effectiveness.

Classroom: M.I.A. of Choledocholithiasis

Management of Complicated Appendicitis: Open or Laparoscopic Surgery?

Patients with acute appendicitis can present at different stages of the disease process, ranging from mild mucosal inflammation to frank perforation with abscess formation. The reported overall incidence of acute appendicitis varies with age, gender, and geographical differences. Interestingly, while the incidence of non-perforated appendicitis in the United States decreased between 1970 and 2004, no significant decline in the rate of perforated appendicitis was observed despite the increasng use of computed tomography (CT) and fewer negative appendectomies.

Of 32,683 appendectomies sampled from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) hospitals between 2005 and 2008, 5,405 patients (16.5%) had a preoperative diagnosis of acute appendicitis with peritonitis/abscess.

The definition of complicated appendicitis varies slightly in the literature. Clinicopathological diagnoses (gangrenous, perforated, appendiceal abscess/phlegmon) of acute appendicitis are commonly used for its definition. Classically, patients at the extremes of age are more likely to present with complicated appendicitis. Similarly, pre-morbid conditions including diabetes and type of medical insurance are significantly associated with the risk of perforation.

The importance of early appendectomy has also been emphasized to prevent perforation of the appendix and the sub- sequent negative impact on patient outcomes. However, more recent meta-analysis data supports the safety of a relatively short (12–24 h) delay before appendectomy, which was not significantly associated with increased rate of complicated appendicitis. Teixeira et al. also showed that the time to appendectomy was not a significant risk factor for perforated appendicitis but did result in a significantly increased risk of surgical site infection.

The outcome of patients with complicated appendicitis is significantly worse than patients with uncomplicated appendicitis. A population-based study from Sweden showed that, in a risk-adjusted model, patients with perforated appendicitis were 2.34 times more likely to die after appendectomy than non- perforated appendicitis patients. Because of its higher mortality and morbidity in patients with complicated appendicitis, the management of complicated appendicitis has evolved significantly over the last few decades.

Open or Laparoscopic Surgery 

Since the first laparoscopic appendectomy was described by Semm in 1983, multiple studies have compared operative time, complication rates, length of hospital stay, hospital cost, and other outcomes between open and laparoscopic appendectomy for acute appendicitis. The most recent Cochrane review included 67 studies showing that laparoscopic appendectomy was associated with a lower incidence of wound infection, reduced postoperative pain, shorter postoperative length of hospital stay, and faster recovery to daily activity. In contrast, reduced risk of intra-abdominal abscesses and shorter operative time were found as the advantages of open appendectomy.

Due to increased surgeon experience in uncomplicated appendicitis, laparoscopic appendectomy is more frequently attempted even in complicated appendicitis cases as an alternative approach to open appendectomy. Although the general surgical steps for complicated appendicitis are similar to those for uncomplicated appendicitis, the laparoscopic procedure can be more technically demanding. Therefore, conversion from laparoscopic appendectomy to open appendectomy can be expected.

Despite these concerns, the laparoscopic approach in patients with com- plicated appendicitis has been proven to be safe and comparable to open appendectomy. Retrospective studies using a large database in the United States uniformly showed more favorable clinical outcomes (mortality, morbidity, length of hospital stay, readmission rate) and hospital costs in patients who underwent laparoscopic appendectomy when compared to open appendectomy. The real risk of developing an intra- abdominal abscess after laparoscopic appendectomy remains unclear. A meta-analysis by Markides et al. found no significant difference in the intra-abdominal abscess rate between laparoscopic and open appendectomy for complicated appendicitis, whereas Ingraham et al. showed a higher likelihood of developing an organ-space surgical site infection in patients undergoing laparoscopic appendectomy.

Non Operative Management of SPLENIC TRAUMA

Resultado de imagem para splenic trauma

The spleen, an important component of the reticuloendothelial system in normal adults, is a highly vascular solid organ that arises as a mass of differentiated mesenchymal tissue during early embryonic development. The normal adult spleen weighs between 75 and 100 g and receives an average blood flow of 300 mL/min. It functions as the primary filter of the reticuloendothelial system by sequestering and removing antigens, bacteria, and senescent or damaged cellular elements from the circulation. In addition, the spleen has an important role in humoral immunity because it produces immunoglobulin M and opsonins for the complement activation system.

The increased availability of high-resolution CT scan and advances in arterial angiography and embolization techniques have contributed to the success of nonoperative management of splenic injuries.

The hemodynamically stable patient with blunt splenic trauma can be adequately managed with bed rest, serial abdominal exams, and hemoglobin and hematocrit monitoring. This approach, in combination with occasional angiography, especially for grade III and IV injuries, confers a splenic salvage rate of up to 95%.

In the setting of expectant management, indications for angiography have been delineated by several studies and include the following CT scan features: contrast extravasation, the presence of a pseudoaneurysm, significant hemoperitoneum, high-grade injury, and evidence of a vascular injury. The goal of angiography is to localize bleeding and embolize the source with coils or a gelatin foam product. Embolization can occur either at the main splenic artery just distal to the dorsal pancreatic portion of the vessel—known as proximal embolization—or selectively at the distal branch of the injured vessel. The goal behind the former technique is to decrease the perfusion pressure to the spleen to encourage hemostasis. The disadvantage to this technique is global splenic ischemia, and many have questioned the spleen’s immunocompetence following proximal embolization.

Malhotra et al. examined the effects of angioembolization on splenic function by examining serum levels of a particular T-cell line. T-cell proportions between patients who had undergone splenic embolization with asplenic patients and healthy controls were similar suggesting some degree of splenic immunocompetency was maintained. A Norwegian study comparing blood samples from patients who had undergone angioembolization with healthy controls demonstrated that the study samples had similar levels of pneumococcal immunoglobulins and no Howell-Jolly bodies, suggesting normal splenic function. Although these preliminary studies remain encouraging, there is no definitive evidence that splenic immunocompetency is fully maintained following angio-embolization.

There is no question that advancements in interventional techniques have contributed to the successful nonoperative management of splenic injuries. This has certainly changed the strategy, but it has not completely replaced operative intervention. The challenge now remains predicting those patients who will ultimately require splenectomy.

Many groups have studied potential predictors of nonoperative failure. Earlier studies found that a higher injury grade, increased transfusion requirement, and hypotension on initial presentation consistently predicted failure of nonoperative management. More recent literature reflects the use of advanced imaging techniques for predicting which patients will ultimately require splenectomy. Haan looked at the overall outcomes of patients admitted with blunt splenic trauma and reported several radiographic findings that were prevalent among patients requiring splenectomy after angioembolization:

  1. contrast extravasation,
  2. pseudoaneurysm,
  3. significant hemoperitoneum,
  4. and arteriovenous fistula.

Among these characteristics, an arteriovenous fistula had the highest rate of nonoperative failure at 40%. Nonradiographic features associated with significant risk of nonoperative failure include age greater than 40, injury severity score of 25 or greater, or presence of large-volume hemoperitoneum.

Aside from radiographic findings, some groups have also examined the mechanism of injury and its association with nonoperative failure. Plurad et al. conducted a retrospective review over a 15-year period and found that patients who were victims of blunt assault were more likely to fail nonoperative management: 36% of these patients required splenectomy versus 11.5% of patients from all other mechanisms combined. These findings suggest that regardless of overall injury severity, individuals who sustain a direct transfer of injury to the left torso are more likely to require splenectomy.

Currently, the accepted standard of care for most splenic trauma is expectant management with close observation. Operative intervention is reserved for the hemodynamically labile patient who shows signs of active hemorrhage and who does not respond appropriately to fluid resuscitation. Although these clinical scenarios seem straightforward, it is often the condition of the patient who falls in between the two ends of the spectrum that can be the most challenging to manage. In the setting of advanced imaging techniques and interventional radiology, the trauma surgeon has more diagnostic information and more treatment options for the patient with splenic trauma.

IPMN Surgical Management

Resultado de imagem para ipmn

INTRODUCTION

IPMNs were first recognized in 1982 by Ohashi, but the term IPMN was not officially used until 1993. IPMNs are defined in the WHO Classification of Tumors of the Digestive System as an intraductal, grossly visible epithelial neoplasm of mucin-producing cells. Using imaging and histology, IPMNs can be classified into three types based on duct involvement:

1. Main-duct IPMN (approximately 25% of IPMNs): Segmental or diffuse dilation of the main pancreatic duct (>5 mm) in the absence of other causes of ductal obstruction.

2. Branch-duct IPMN (approximately 57% of IPMNs): Pancreatic cysts (>5 mm) that communicate with the main pancreatic duct.

3. Mixed type IPMN (approximately 18% of IPMNs): Meets criteria for both main and branch duct.

capturadetela2019-02-0107.46.31

Due to the asymptomatic nature of the disease, the overall incidence of IPMNs is difficult to define but is thought to account for approximately 3% to 5% of all pancreatic tumors. Most IPMNs are discovered as incidental lesions from the workup of an unrelated process by imaging or endoscopy. IPMNs are slightly more prevalent in males than in females, with a peak incidence of 60 to 70 years of age. Branch-duct IPMNs tend to occur in a slightly younger population and are less associated with malignancy compared with main-duct or mixed variants.

Because a majority of IPMNs are discovered incidentally, most are asymptomatic. When symptoms do occur, they tend to be nonspecific and include unexplained weight loss, anorexia, abdominal pain, and back pain. Jaundice can occur with mucin obstructing the ampulla or with an underlying invasive carcinoma. The obstruction of the pancreatic duct can also lead to pancreatitis. IPMNs may represent genomic instability of the entire pancreas. This concept, known as a “field defect,” has been described as a theoretical risk of developing a recurrent IPMN or pancreatic adenocarcinoma at a site remote from the original IPMN. The three different types of IPMNs, main duct, branch duct, and mixed duct, dictate different treatment algorithms.

MAIN DUCT IPMNs

Main-duct IPMNs should be resected in all patients unless the risks of existing comorbidities outweigh the benefits of resection. The goal of operative management of IPMNs is to remove all adenomatous or potentially malignant epithelium to minimize recurrence in the pancreas remnant. There are two theories on the pathophysiologic basis of IPMNs. The first groups IPMNs into a similar category as an adenocarcinoma, a localized process involving only a particular segment of the pancreas. The thought is that removal of the IPMN is the only treatment necessary. In contrast, some believe IPMNs to represent a field defect of the pancreas. All of the ductal epithelium remains at risk of malignant degeneration despite removal of the cyst. Ideally, a total pancreatectomy would eliminate all risk, but this is a radical procedure that is associated with metabolic derangements and exocrine insufficiency. Total pancreatectomy should be limited to the most fit patients, with a thorough preoperative assessment and proper risk stratification prior to undertaking this surgery. 

There is less uncertainty with treatment of main-duct IPMNs. The high incidence of underlying malignancy associated with the IPMNs warrants surgical resection. IPMNs localized to the body and tail (approximately 33%) can undergo a distal pancreatectomy with splenectomy. At the time of surgery, a frozen section of the proximal margin should be interpreted by a pathologist to rule out high-grade dysplasia. A prospective study identified a concordance rate of 94% between frozen section and final pathologic examination. If the margin is positive (high-grade dysplasia, invasion) additional margins may be resected from the pancreas until no evidence of disease is present. However, most surgeons will proceed to a total pancreatectomy after two subsequent margins demonstrate malignant changes. This more extensive procedure should be discussed with the patient prior to surgery, and the patient should be properly consented regarding the risks of a total pancreatectomy.

IPMNs localized to the head or uncinate process of the pancreas should undergo a pancreaticoduodenectomy. A frozen section of the distal margin should be analyzed by pathology for evidence of disease. As mentioned before, after two additional margins reveal malignant changes, a total pancreatectomy is usually indicated (approximately 5%). The absence of abnormal changes in frozen sections does not equate to negative disease throughout the pancreas remnant. Rather, skip lesions involving the remainder of the pancreas can exist and thus patients ultimately still require imaging surveillance after successful resection. A prophylactic total pancreatectomy is rarely performed because the subsequent pancreatic endocrine (diabetes mellitus) and exocrine deficits (malnutrition) carry an increased morbidity.

BRANCH DUCT IPMNs

Localized branch-duct IPMN can be treated with a formal anatomic pancreatectomy, pancreaticoduodenectomy, or distal pancreatectomy, depending on the location of the lesion. However, guidelines were established that allow for nonoperative management with certain branch- type IPMN characteristics.

These include asymptomatic patients with a cyst size less than 3 cm and lack of mural nodules. The data to support this demonstrate a very low incidence of malignancy (approximately 2%) in this patient group. Which nearly matches the anticipated mortality of undergoing a formal anatomic resection. In approximately 20% to 30% of patients with branch- duct IPMNs, there is evidence of multifocality. The additional IPMNs can be visualized on high-resolution CT or MRI imaging. Ideally, patients with multifocal branch-duct IPMNs should undergo a total pancreatectomy. However, as previously mentioned, the increased morbidity and lifestyle alterations associated with a total pancreatectomy allows for a more conservative approach. This would include removing the most suspicious or dominant of the lesions in an anatomic resection and follow-up imaging surveillance of the remaining pancreas remnant. If subsequent imaging demonstrates malignant charac- teristics, a completion pancreatectomy is usually indicated.

RECURRENCE RATES

Recurrence rates with IPMNs are variable. An anatomic resection of a branch-duct IPMN with negative margins has been shown to be curative. The recurrence of a main- duct IPMN in the remnant gland is anywhere from 0% to 10% if the margins are negative and there is no evidence of invasion. Most case series cite a 5-year survival rate of at least 70% after resection of noninvasive IPMNs. In contrast, evidence of invasive disease, despite negative margins, decreases 5-year survival to 30% to 50%. The recurrence rate in either the pancreatic remnant or distant sites approaches 50% to 90% in these patients. Histopathologic subtype of the IPMN is correlated with survival. The aggressive tubular subtype has a 5-year survival ranging from 37% to 55% following surgical resection, whereas the colloid subtype has 5-year survival ranging from 61% to 87% post resection. Factors associated with decreased survival include tubular subtype, lymph node metastases, vascular invasion, and positive margins. IPMNs with evidence of invasion should be treated similar to pancreatic adenocarcinomas. Studies show that IPMNs tend to have better survival than pancreatic adenocarcinoma. This survival benefit may be secondary to the less aggressive tumor biology or the earlier diagnosis of IPMNs.

SURVEILLANCE

All patients who have a resected IPMN should undergo imaging surveillance. There is continual survival benefit with further resection if an IPMN does recur. International Consensus Guidelines published in 2017 offer recom- mendations for the frequency and modality of imaging surveillance after resection. Routine serum measurement of CEA and CA 19-9 has a limited role for detection of an IPMN recurrence. Of note, a new pancreatic lesion discovered on imaging after resection could represent a postoperative pseudocyst, a recurrence of the IPMN from inadequate resection, a new IPMN, or an unrelated new neoplastic process. IPMNs may also be associated with extrapancreatic neoplasms (stomach, colon, rectum, lung, breast) and pancreatic ductal adenocarcinoma. It is unclear if this represents a true genetic syndrome. However, patients with IPMNs should have a discussion about the implications of their disease with their physician and are encouraged to undergo colonoscopy to exclude a synchronous neoplastic process.

The incidence of PANCREATIC CYSTIC LESIONS will continue to increase as imaging technology improves. EUS, cytology, and molecular panels have made differentiating the type of PCN less problematic. The importance of an accurate preoperative diagnosis ensures that operative management is selectively offered to those with high-risk lesions. Management beyond surgery, including adjuvant therapy and surveillance, continue to be active areas of research.

Perioperative Medicine

Resultado de imagem para perioperative medicine


Surgery and anesthesia profoundly alter the normal physiologic and metabolic states. Estimating the patient’s ability to respond to these stresses in the postoperative period is the task of the preoperative evaluation. Perioperative complications are often the result of failure, in the preoperative period, to identify underlying medical conditions, maximize the patient’s preoperative health, or accurately assess perioperative risk. Sophisticated laboratory studies and specialized testing are no substitute for a thoughtful and careful history and physical examination. Sophisticated technology has merit primarily in confirming clinical suspicion.

Classroom: Perioperative Medicine

Surgical Treatment of Hepatocellular Carcinoma: Resection Versus Transplantation

Resultado de imagem para hepatocellular carcinoma management


Hepatocellular carcinoma is the second most common cause of cancer mortality worldwide and its incidence is rising in North America, with an estimated 35,000 cases in the U.S. in 2014. The best chance for cure is surgical resection in the form of either segmental removal or whole organ transplantation although recent survival data on radiofrequency ablation approximates surgical resection and could be placed under the new moniker of “thermal resection”. The debate between surgical resection and transplantation focuses on patients with “within Milan criteria” tumors, single tumors, and well compensated cirrhosis who can safely undergo either procedure. Although transplantation historically has had better survival outcomes, early diagnosis, reversal of liver disease, and innovations in patient selection and neo-adjuvant therapies have led to similar 5-year survival. Transplantation clearly has less risk of tumor recurrence but exposes recipients to long term immunosuppression and its side effects. Liver transplantation is also limited by the severe global limit on the supply of organ donors whereas resection is readily available. The current data does not favor one treatment over the other for patients with minimal or no portal hypertension and normal synthetic function. Instead, the decision to resect or transplant for HCC relies on multiple factors including tumor characteristics, biology, geography, co-morbidities, location, organ availability, social support and practice preference.

Resection Versus Transplantation

The debate between resection and transplantation revolves around patients who have well compensated cirrhosis with Milan criteria resectable tumors. Patients within these criteria represent a very small proportion of those who initially present with HCC. This is especially true in western countries where hepatitis C is the most common cause of liver failure and HCC is a result of the progressive and in most cases advanced cirrhosis.

Given the need for a large number of patients to show statistical significance, it would be difficult to perform a high-quality prospective randomized controlled trial comparing resection and transplantation. In fact the literature revealed that no randomized controlled trials addressing this issue exist. Instead, outcomes of surgical treatment for HCC stem from retrospective analyses that have inherent detection, selection and attrition biases.

Given the numerous articles available on this subject, several meta-analyses have been published to delineate the role of transplantation and resection for treatment of HCC. However, there is reason to be wary of these meta-analyses because they pool data from heterogeneous populations with variable selection criteria and treatment protocols. One such meta-analysis by Dhir et al. focused their choice of articles to strict criteria which excluded studies with non-cirrhotic patients, fibrolamellar HCC and hepato-cholangiocarcinomas but included those with HCC within Milan criteria and computation of 5-year survival; between 1990 and 2011 they identified ten articles that fit within these criteria, of which six were ITT analyses, six included only well-compensated cirrhotics (Child-Pugh Class A without liver dysfunction) and three were ITT analyses of well-compensated cirrhotics.

Analysis of the six ITT studies that included all cirrhotics (n = 1118) (Child-Pugh Class A through C) showed no significant difference in survival at 5 years (OR = 0.600, 95 % CI 0.291– 1.237 l; p=0.166) but ITT analysis of only well-compensated cirrhotics (Child- Pugh Class A) revealed that patients undergoing transplant had a significantly higher 5-year survival as compared to those with resection (OR=0.521, 95 % CI 0.298–0.911; p=0.022).

A more recent ITT retrospective analysis from Spain assessed long-term survival and tumor recurrence following resection or transplant for tumors <5 cm in 217 cirrhotics (Child-Pugh Class A, B and C) over the span of 16 years. Recurrence at 5 years was significantly higher in the resection group (71.6 % vs. 16 % p<0.001) but survival at 4 years was similar (60 % vs. 62 %) which is likely explained by the evolving role of adjuvant therapies to treat post-resection recurrence.

Conclusions

  1. Patients with anatomically resectable single tumors and no cirrhosis or Child-Pugh Class A cirrhosis with normal bilirubin, HVPG (<10 mmHg), albumin and INR can be offered resection (evidence quality moderate; strong recommendation).
  2. Patients with Milan criteria tumors in the setting of Child- Pugh Class A with low platelets and either low albumin or high bilirubin or Child-Pugh Class B and C cirrhosis, especially those with more than one tumor, should be offered liver transplantation over resection (evidence quality moderate; strong recommendation).
  3. Those with Milan criteria tumors and Child-Pugh Class A cirrhosis without liver dysfunction should be considered for transplantation over resection (evidence quality low; weak recommendation).
  4. No recommendation can be made in regard to transplanting tumors beyond Milan criteria (evidence quality low) except to follow regional review board criteria.
  5. Pre-transplant therapies such as embolic or thermal ablation are safe and by expert opinion considered to be effective in decreasing transplant waitlist dropout and bridging patients to transplant (evidence quality low, weak recommendation). These interventions should be considered for those waiting longer than 6 months (evi- dence quality low, moderate recommendation).
  6. Living donor liver transplantation is a safe and effective option for treatment of HCC that are within and exceed Milan criteria (evidence quality moderate, weak recommendation).

Minimally Invasive Pancreatic Surgery

Minimally invasive surgery, a widely adopted tool for most domains of gastrointestinal surgery, has been relatively slow to evolve in the field of pancreatic surgery. The reasons include proximity to the great vessels, retroperitoneal location, need for advanced intracorporeal suturing skills and increased risk of complications associated with these procedures. With enormous development in surgical technology coupled with improved anatomical knowledge and refined skills, minimally invasive pancreatic surgery has grown out of its infancy and is an established specialty in hepato-pancreato-biliary surgery today. As a result, the initial scepticism and reluctance associated with minimally invasive pancreatic resections has decreased and many surgeons are attempting to enter this difficult terrain. Recent publications highlight potential advantages of minimally invasive pancreatic resection (MIPR) over open pancreatic resection (OPR). These include reduced pain, decreased blood loss and need for transfusion, an earlier return of bowel function, decreased wound infection rates and shorter intensive care unit and overall hospital stays. Though the number of minimally invasive pancreatic resections performed for benign and malignant diseases of the pancreas has increased in recent years, cost considerations and financial implications of these new approaches need to be well defined. Clear guidelines and standardization of surgical technique are paramount for the safe and steady expansion of this novel surgical approach.

Minimally Invasive Pancreaticoduodenectomy

Laparoscopic Gastroduodenopancreatectomy

Gagner and Pomp reported the first LPD in 1994. They felt that laparoscopy was not useful for such a major resection and reconstruction. However, their initial patients included those with chronic pancreatitis, where LPD is considered difficult to do even at present. With this background, we began doing LPD after sufficient experience had been gained in other major laparoscopic procedures such as colectomy, gastrectomy and choledochal cyst excision. During the initial phase, LPD was attempted in only periampullary tumours or small pancreatic head masses. With increasing experience, the indications for LPD were expanded to include carcinoma head of the pancreas and larger tumours.

Over the years, numerous technical modifications in terms of surgeon comfort, use of energy source, radicality of surgery, type of reconstruction and specimen extraction were made. These refinements resulted in better outcomes as was evident in the next publication in 2009 which included 75 patients. Oncologically, the resection status and lymph nodal yield were comparable with the open approach and would translate to equal survival outcomes. Recently, Asbun et al. compared their open PDs and LPDs and found that LPD had better perioperative outcomes in terms of blood loss and ICU and hospital stays.

In 2015, Palanivelu reported that the pathological radicality of LPD was comparable to that of the open approach when performed by experienced minimal access surgeons. And analysed yours long-term outcomes following LPD in 130 patients with pancreatic and periampullary cancers. This study, one of the largest published series so far, showed excellent short-term results and acceptable long-term survival. The pancreatic fistula rate was 8.5%, mean (SD) operating time was 310 (34) min, and mean blood loss was 110 (22) ml with a mean hospital stay of 8 (2.6) days. The resected margins were positive in 9.2% with an overall 5-year actuarial survival of 29.4% and a median survival of 33 months.

Published outcomes of LPD have shown that it is feasible and safe when done in high-volume institutions by expert surgeons. In a recent systematic review of LPD, Boggi et al. identified 25 articles with 746 patients who had LPD for both malignant and benign indications. The mean operative time and estimated blood loss were 464 min and 321 ml, respectively. Conversion to open surgery was required in 9% of patients. The average hospital stay was 14 days. The overall morbidity, mortality and pancreatic fistula rates were 41.2, 1.9 and 22.3%, respectively. The majority of surgeons did a pancreaticojejunostomy (84%), whereas a small number did pancre- aticogastrostomy (9.8%) or duct occlusion (6.8%). A slight majority did pylorus preservation (55%) instead of hemigastrectomy (45%). No major differences in outcomes were seen for laparoscopic, robotic, laparoscopic-assisted or hand-assisted methods.

Similarly, no significant differences were seen between high-volume (>30 cases) and low-volume centres other than longer operative times and higher estimated blood loss in the low-volume ones. The average number of lymph nodes recovered was 14.4 and the negative margin rate was 95.6%. Although the data were heterogeneous with a high likelihood for selection bias, the results for LPD appear to be at least comparable to those in patients undergoing open PD.

In general, LPD was associated with reduced blood loss and hospital stay; however, operative times tend to be longer. The longer operative times associated with LPD tend to reduce with increasing experience. In a series by Kim et al., the median operative time for LPD was 7.9 h and decreased with accumulating experience of the surgeon doing this procedure from 9.8 h for the first 33 cases to 6.6 h for the last 34 cases.

Minimally Invasive Pancreatic Cancer Surgery

Modern Concepts of Pancreatic Surgery

pancreaticsurgery1.jpg Operations on the gallbladder and bile ducts are among the surgical procedures most commonly performed by general surgeons. In most hospitals, cholecystectomy is the most frequently performed operation within the abdomen. Pancreatic surgery is less frequent , but because of the close relation between the biliary system and the pancreas, knowledge of pancreatic problems is equally essential to the surgeon. Acute and chronic pancreatitis and cancer of the pancreas are often encountered by surgeons, with apparently increasing frequency; their treatment remains difficult and perplexing. This review demonstrates the modern aspects of pancreatic surgery. Good study.


AULA: PRÍNCIPIOS MODERNOS DA CIRURGIA PANCREÁTICA


Palestras e Vídeoaulas

Resultado de imagem para palestras


Vejam nos links a seguir algumas de nossas palestras disponíveis para download no Canal do SlideShare  e Vídeoaulas presentes no You Tube.

Bom Estudo e não deixe de tirar suas dúvidas nos comentários.


Surgical treatment of ACUTE PANCREATITIS


 Acute pancreatitis is more of a range of diseases than it is a single pathologic entity. Its clinical manifestations range from mild, perhaps even subclinical, symptoms to a life-threatening or life-ending process. The classification of acute pancreatitis and its forms are discussed in fuller detail by Sarr and colleagues elsewhere in this issue. For the purposes of this discussion, the focus is on the operative interventions for acute pancreatitis and its attendant disorders. The most important thing to consider when contemplating operative management for acute pancreatitis is that we do not operate as much for the acute inflammatory process as for the complications that may arise from inflammation of the pancreas. In brieSurgical treatment of acute pancreatitisf, the complications are related to: necrosis of the parenchyma, infection of the pancreas or surrounding tissue, failure of pancreatic juice to safely find its way to the lumen of the alimentary tract, erosion into vascular or other structures, and a persistent systemic inflammatory state. The operations may be divided into three major categories: those designed to ameliorate the emergent problems associated with the ongoing inflammatory state, those designed to ameliorate chronic sequelae of an inflammatory event, and those designed to prevent a subsequent episode of acute pancreatitis. This article provides a review of the above.


SURGICAL TREATMENT OF ACUTE PANCREATITIS

Centro Cirúrgico: O TEMPLO DO CIRURGIÃO.

BLOCO CIRÚRGICO: O TEMPLO DO CIRURGIÃO.

BLOCO CIRÚRGICO: O TEMPLO DO CIRURGIÃO.


Templo (do latim templum, “local sagrado”) é uma estrutura arquitetônica dedicada ao serviço religioso. O termo também pode ser usado em sentido figurado. Neste sentido, é o reflexo do mundo divino, a habitação de Deus sobre a terra, o lugar da Presença Real. É o resumo do macrocosmo e também a imagem do microcosmo: ‘o corpo é o templo do Espírito Santo’ (I, Coríntios, 6, 19).

Dos locais especiais, O corpo humano (morada da alma), a Cavidade Peritoneal e o Bloco Cirúrgico, se bem analisados, são muito semelhantes e merecem atitudes e comportamentos respeitáveis. O Templo, em todos os credos, induz à meditação, absoluto silêncio tentando ouvir o Ser Supremo. A cavidade peritoneal, espaço imaculado da homeostase, quando injuriada, reage gritando em dor, implorando uma precoce e efetiva ação terapêutica.

O Bloco Cirúrgico, abrigo momentâneo do indivíduo solitário, que mudo e quase morto de medo, recorre à prece implorando a troca do acidente, da complicação, da recorrência, da seqüela, da mutilação, da iatrogenia e do risco de óbito pela agressiva intervenção que lhe restaure a saúde, patrimônio magno de todo ser vivo.

O Bloco Cirúrgico clama por respeito ao paciente cirúrgico, antes mesmo de ser tomado por local banal, misturando condutas vulgares, atitudes menores, desvio de comportamento e propósitos secundários. Trabalhar no Bloco Cirúrgico significa buscar a perfeição técnica, revivendo os ensinamentos de William Stewart Halsted , precursor da arte de operar, dissecando para facilitar, pinçando e ligando um vaso sangüíneo, removendo tecido macerado, evitando corpos estranhos e reduzindo espaço vazio, numa síntese feita com a ansiedade e vontade da primeira e a necessidade e experiência da última.

Mas, se a cirurgia e o cirurgião vêm sofrendo grande evolução, técnica a primeira e científica o segundo, desde o início do século, a imagem que todo doente faz persiste numa simbiose entre mitos e verdades. A cirurgia significa enfrentar ambiente desconhecido chamado “sala de cirurgia” onde a fobia ganha espaço rumo ao infinito. O medo prepondera em muitos.

A confiança é um reconhecimento e um troféu que o cirurgião recebe dos pacientes e seus familiares. Tanto a CONFIANÇA quanto a SEGURANÇA  têm que ser preservadas a qualquer custo. Não podem correr o risco de serem corroídas por palavras e atitudes de qualquer membro da equipe cirúrgica. Não foi tarefa fácil transformar, para a população, o ato cirúrgico numa atividade científica, indispensável, útil e por demais segura. Da conquista da cirurgia, como excelente arma terapêutica para a manutenção de um alto padrão de qualidade técnica, resta a responsabilidade dos cirurgiões, os herdeiros do suor e sangue, que se iniciou com o trabalho desenvolvido por Billroth, Lister, Halsted, Moyniham, Kocher e uma legião de figuras humanas dignas do maior respeito, admiração e gratidão universal.

No ato operatório os pacientes SÃO TODOS SEMELHANTES EM SUAS DIFERENÇAS, desde a afecção, ao prognóstico, ao caráter da cirurgia e especialmente sua relação com o ato operatório.  Logo o cirurgião entra no bloco cirúrgico com esperança e não deve sair com dúvida. Nosso trabalho é de equipe,  cada um contribui com uma parcela, maior ou menor, para a concretização do todo, do ato cirúrgico por completo, com muita dedicação e sabedoria.  Toda tarefa, da limpeza do chão ao ato de operar, num crescendo, se faz em função de cada um e em benefício da maioria, o mais perfeito possível e de uma só vez, quase sempre sem oportunidade de repetição e previsão de término.

O trabalho do CIRURGIÃO é feito com carinho, muita dignidade, humildade e executado em função da alegria do resultado obtido aliado a dimensão ética do dever cumprido que transcende a sua existência. A vida do cirurgião se materializa no ato operatório e o bloco cirúrgico, palco do nosso trabalho não tolera e jamais permite atitudes menores, inferiores, ambas prejudiciais a todos os pacientes e a cada cirurgião. Como ambiente de trabalho de uma equipe diversificada, precisa manter, a todo custo, o controle de qualidade, por lidar com o que há de mais precioso na Terra: o ser humano.

Complications of Bariatric Surgery presenting to the GENERAL SURGEON


Over the past decade, following the publication of several long-term outcome studies that showed a significant improvement in cardiovascular risk and mortality after bariatric surgery, the number of bariatric procedures being carried out annually in the UK has grown exponentially. Surgery remains the only way to produce significant, sustainable weight loss and resolution of comorbidities. Nevertheless, relatively few surgeons have developed an interest in this field. Most bariatric surgery is now performed in centres staffed by surgeons with a bariatric interest, usually as part of a multidisciplinary team.

The commonest weight loss procedures performed around the world at present are the gastric band, the gastric bypass and the sleeve gastrectomy. In very obese patients, an alternative operation is the duodenal switch, while the new ileal transposition procedure represents one of the few purely metabolic operations designed specifically for the treatment of type II diabetes. Older operations such as vertical banded gastroplasty and jejuno-ileal bypass are now obsolete, although patients who have undergone such procedures in the distant past may still present to hospital with complications. The main endoscopic option at present is insertion of a gastric balloon, with newer procedures like the endoscopic duodenojejunal barrier and gastric plication on the horizon. Implantable neuroregulatory devices (gastric ‘pacemakers’) represent a new direction for surgical weight control by harnessing neural feedback signals to help control eating.

It should be within the capability of any abdominal surgeon to manage the general complications of bariatric surgery, which include pulmonary atelectasis/pneumonia, intra-abdominal bleeding, anastomotic or staple-line leak with or without abscess formation, deep vein thrombosis (DVT)/pulmonary embolus and superficial wound infections. Patients may be expected to present with malaise, pallor, features of sepsis or obvious wound problems. However, clinical features may be difficult to recognise owing to body habitus. Abdominal distension, tenderness and guarding may be impossible to determine clinically due to the patient’s obesity. Pallor is non-specific. Fever and leucocytosis may be absent. Wound collections may be very deep. These complications in a bariatric patient should be actively sought with appropriate investigations. In particular, it is vital for life-threatening complications such as bleeding, sepsis and bowel obstruction to be recognised promptly and treated appropriately. A persistent tachycardia may be the only sign heralding significant complications and should always be taken seriously. It is useful to classify complications as ‘early’, ‘medium’ and ‘late’ because, from the receiving clinician’s point of view, the differential diagnosis will differ accordingly.

Complications of bariatric surgery presenting to the GENERAL SURGEON

7 MOST QUESTIONS ABOUT THE SURGEON PROFESSION

Reassuring Worried MotherWhat is a Surgical Profession?

The professions are the means by which the complex services needed by society are organized. A profession has been defined by the American College of Surgeons as: an occupation whose core element is work that is based upon the mastery of a complex body of knowledge and skills. It is a vocation in which knowledge of some department of science or learning, or the practice of an art founded upon it, is used in the service of others. Its members are governed by codes of ethics and profess a commitment to competence, integrity and morality, altruism and to the promotion of the public good within their domain. These commitments form the basis of a social contract between a profession and society, which, in turn, grants the profession a monopoly over the use of its knowledge base, the right to considerable autonomy in practice and the privilege of self-regulation. Professions and their members are accountable to those served and to society.

1. What are the core elements of a profession? All professions are characterized by four core elements: (1) a monopoly over the use of specialized knowledge; (2) in return for that monopoly that we enjoy, relative autonomy in practice and the responsibility of self-regulation; (3) altruistic service to individuals and society; and (4) responsibility for maintaining and expanding professional knowledge and skills.

3.What is professionalism? Professionalism describes the cognitive, moral, and collegial attributes of a professional. Ultimately, it is all the reasons that your mother is proud to say that you are a doctor and a surgeon.

4. Why do physicians need a code of professional conduct? Trust is integral to the practice of surgery. The Code of Professional Conduct clarifies the relationship between the surgical profession and the society it serves. This is often referred to as a social contract. For patients the code of professional conduct crystallizes the commitment of the surgical community toward individual patients and their communities. Trust is built brick by brick.

5. What is the Code of Professional Conduct ? The Code of Professional Conduct takes the general principles of professionalism and applies them to surgical practice. The code is the foundation on which we earn our professional privileges and the trust of patients and the public. It is our job description. During the continuum of the preoperative, intraoperative, and postoperative care surgeons have the responsibility to:

5.1 Serve as effective advocates for our patients’ needs.

5.2 Disclose therapeutic options including their risks and benefits.

5.3 Disclose and resolve any conflict of interest that might influence the decisions of care.

5.4 Be sensitive and respectful of patients, understanding their vulnerability during the perioperative period.

5.5 Fully disclose adverse events and medical errors.

5.6 Acknowledge patients’ psychological, social, cultural and spiritual needs.

5.7 Encompass within our surgical care the special needs of terminally ill patients.

5.8 Acknowledge and support the needs of patients’ families and

5.9 Respect the knowledge, dignity, and perspective of other healthcare professionals.

6. Why do surgeons need their own code of professionalism? A surgical procedure is an extreme experience. We impact our patients physiologically, psychologically, and socially. When patients submit themselves to a surgical experience, they must trust that the surgeon will put their welfare above all other considerations. The written code helps to reinforce these values.

7. What are the fundamental principles of the Code of Professional Conduct and the codes of other professional societies?

7.1 The primacy of patient welfare.

This means that the patient’s interests always come first. Altruism is central to this concept, and it is the surgeon’s altruism that fosters trust in the physician-patient relationship. 

7.2 Patient autonomy.

Patients must understand and make their own informed decisions about their treatment. This is tricky. As physicians we must be honest with our patients so that they make educated decisions. At the same time, we must make sure that their decisions are consistent with ethical practices and do not lead to demands for inappropriate care. 

7.3 Social justice.

As physicians we must advocate for our individual patients while at the same time promoting the health of the healthcare system as a whole. We must balance our patient’s needs (autonomy) and not misdirect scarce resources that benefit society (social justice).

Tratamento da hemorragia digestiva alta por varizes esofágicas: ATUALIZAÇÃO

HIPERTENSÃO PORTAL


O sistema portal é uma rede venosa de baixa pressão, com níveis fisiológicos <5 mmHg. Desta forma, o termo hipertensão portal (HP) designa uma síndrome clínica caracterizada pelo aumento mantido na pressão venosa em níveis acima dos fisiológicos. Ela é considerada clinicamente significante quando acima de 10 mmHg; neste nível existe o risco de surgimento de varizes esofagogástricas (VEG). Por sua vez, valores acima de 12 mmHg cursam com risco de rompimento dessas varizes, sua principal complicação.

ARTIGO DE REVISÃO – HIPERTENSÃO PORTAL

O aumento do fluxo como fator preponderante inicial da HP é raro e representado por fístulas arterioportais congênitas, traumáticas ou neoplásicas. O aumento da resistência é a condição fisiopatológica inicial mais comum e pode ser classificada de acordo com o local de obstrução ao fluxo em: pré-hepática, intra-hepática e pós-hepática. A HP intra-hepática responde pela grande maioria dos casos e pode ser subdividida de acordo com o local de acometimento estrutural no parênquima hepático em: pré-sinusoidal (ex: esquistossomose hepatoesplênica – EHE), sinusoidal (ex: cirrose hepática) e pós-sinusoidal (ex: doença venoclusiva). Em nosso meio, a maioria dos casos é decorrente da EHE e das hepatopatias crônicas complicadas com cirrose.

O tratamento da HP depende da causa subjacente, da condição clínica e do momento em que é realizado. Pacientes com função hepática comprometida têm abordagem diversa daqueles com ela preservada, como os portadores de EHE. Além disso, o tratamento pode ser emergencial (durante episódio agudo de hemorragia) ou eletivo, como profilaxia pré-primária, primária ou secundária. Por essa diversidade de situações clínicas, não existe modalidade única de tratamento.

O objetivo da aula abaixo foi avaliar os avanços e as estratégias atuais empregadas no tratamento emergencial e eletivo da hemorragia digestiva varicosa em pacientes cirróticos e esquistossomóticos.

AULA: TRATAMENTO CIRÚRGICO DA HIPERTENSÃO PORTAL

Cuidados Gerais com a FERIDA PÓS-OPERATÓRIA

A avaliação e os cuidados de feridas pós-operatórias deve ser do domínio de todos os profissionais que atuam na clínica cirúrgica. O conhecimento a cerca dos processos relacionados a cicatrização tecidual é importante tanto nos cuidados como na prevenção de complicações, tais como: infecções e deiscência. Como tal, todos os profissionais médicos, sendo eles cirurgiões ou de outras especialidades, que participam do manejo clínico dos pacientes no período perioperatório devem apreciar a fisiologia da cicatrização de feridas e os princípios de tratamento de feridas pós-operatório. O objetivo deste artigo é atualizar os profissionais médicos de outras especialidades sobre os aspectos importantes do tratamento de feridas pós-operatório através de uma revisão da fisiologia da cicatrização de feridas, os métodos de limpeza e curativo, bem como um guia sobre complicações de feridas pós-operatórias mais prevalentes e como devem ser manejados nesta situação.

MANEJO CLÍNICO DA FERIDA OPERATÓRIA

Causas de conversão da VIDEOCOLECISTECTOMIA

OZIMO_GAMA_CIRURGIÃO_DIGESTIVOEstima-se que atualmente 90% das colecistectomias sejam realizadas pela técnica laparoscópica, percentual este atingido nos Estados Unidos da América no ano de 1992. Os motivos para tal preferência na escolha da técnica cirúrgica aplicada são claros: menor dor no pós-operatório, recuperação pós-cirúrgica mais rápida, menor número de dias de trabalho perdidos e menor tempo de permanência hospitalar. A colecistectomia laparoscópica foi claramente estabelecida como padrão-ouro para o tratamento cirúrgico da litíase biliar, no entanto 2 a 15% das colecistectomias vídeolaparoscópicas necessitam de conversão para cirurgia convencional, sendo as razões mais comuns a inabilidade para se identificar corretamente a anatomia, suspeita de lesão da árvore biliar e sangramento. A identificação dos fatores associados a um maior índice de conversão possibilita à equipe cirúrgica estimar o grau de dificuldade do procedimento, preparando melhor o paciente para o risco de conversão e permitindo a participação de um cirurgião mais experiente num procedimento de maior risco.

Relacionados ao Paciente: 1. Obesidade (IMC > 35), 2. Sexo Masculino, 3. Idade > 65 anos, 4. Diabetes Mellitus e 5. ASA > 2.

Relacionadas a Doença: 1. Colecistite Aguda, 2. Líquido Pericolecístico, 3. Pós – CPRE, 4. Síndrome de Mirizzi e 5. Edema da parede da vesícula > 5 mm.

Relacionadas a Cirurgia: 1. Hemorragia, 2. Aderências firmes, 3. Anatomia obscura, 4. Fístulas internas e 5. Cirurgia abdominal prévia.

Management of POST-HEPATECTOMY complications

HEPATECTOMY_OZIMOGAMA

Hepatectomia Esquerda – Metástase CR


Hepatic resection had an impressive growth over time. It has been widely performed for the treatment of various liver diseases, such as malignant tumors, benign tumors, calculi in the intrahepatic ducts, hydatid disease, and abscesses. Management of hepatic resection is challenging. Despite technical advances and high experience of liver resection of specialized centers, it is still burdened by relatively high rates of postoperative morbidity and mortality. Especially, complex resections are being increasingly performed in high risk and older patient population. Operation on the liver is especially challenging because of its unique anatomic architecture and because of its vital functions. Common post-hepatectomy complications include venous catheter-related infection, pleural effusion, incisional infection, pulmonary atelectasis or infection, ascites, subphrenic infection, urinary tract infection, intraperitoneal hemorrhage, gastrointestinal tract bleeding, biliary tract hemorrhage, coagulation disorders, bile leakage, and liver failure. These problems are closely related to surgical manipulations, anesthesia, preoperative evaluation and preparation, and postoperative observation and management. The safety profile of hepatectomy probably can be improved if the surgeons and medical staff involved have comprehensive knowledge of the expected complications and expertise in their management.

Classroom: Hepatic Resections

The era of hepatic surgery began with a left lateral hepatic lobectomy performed successfully by Langenbuch in Germany in 1887. Since then, hepatectomy has been widely performed for the treatment of various liver diseases, such as malignant tumors, benign tumors, calculi in the intrahepatic ducts, hydatid disease, and abscesses. Operation on the liver is especially challenging because of its unique anatomic architecture and because of its vital functions. Despite technical advances and high experience of liver resection of specialized centers, it is still burdened by relatively high rates of postoperative morbidity (4.09%-47.7%) and mortality (0.24%-9.7%). This review article focuses on the major postoperative issues after hepatic resection and presents the current management.

REVIEW_ARTICLE_HEPATECTOMY_COMPLICATIONS

The Management of PANCREATIC PSEUDOCYST

Imagem
Pancreatic Pseudocyst

Classroom: Principles of Pancreatic Surgery

The pancreatic pseudocyst is a collection of pancreatic secretions contained within a fibrous sac comprised of chronic inflammatory cells and fibroblasts in and adjacent to the pancreas contained by  surrounding structures. Why a fibrous sac filled with pancreatic fluid is the source of so much interest, speculation, and emotion amongst surgeons and gastroenterologists is indeed hard to understand. Do we debate so vigorously about bilomas, urinomas, or other abdominal collections of visceral secretions? Perhaps it is because the pancreatic pseudocyst represents a sleeping tiger, which though frequently harmless, still can rise up unexpectedly and attack with its enzymatic claws into adjacent visceral and vascular structures and cause lifethreatening complications.

 

Another part of the debate and puzzlement about pancreatic pseudocysts is related to confusion about pancreatic pseudocyst definition and nomenclature. The Atlanta classification, developed in 1992, was a pioneering effort in describing and defining morphologic entities in acute pancreatitis. Since then, a working group has been revising this system to incorporate more modern experience into the terminology. In the latest version of this system, pancreatitis is divided into acute interstitial edematous pancreatitis (IEP) and necrotizing pancreatitis (NP), based on the presence of pancreatic tissue necrosis. The fluid collections associated with these two “types” of pancreatitis are also differentiated. Early (<4 weeks into the disease course) peripancreatic fluid collections in IEP are referred to as acute peripancreatic fluid collections (APFC), whereas in NP, they are referred to as postnecrotic peripancreatic fluid collections (PNPFC). Late (>4 weeks) fluid collections in IEP are called pancreatic pseudocysts, and in NP, they are called walled-off pancreatic necrosis (WOPN). 

 

Acute pancreatitis represents a broad spectrum of disease. Although the disease course may smolder, typically an initial inciting event results in organ injury, which sets into play the evolving clinical course. The early phase of disease is marked by the inflammatory mediators from damaged pancreatic tissue, resulting in variable degrees of systemic inflammatory response. The later phase is determined by the morphology of organ injury, specifically with regard to tissue ischemia and necrosis. The outcome of this later phase is often impacted by local or systemic infection. Peripancreatic fluid collections can occur in both the early and the late phases of disease. They presumably occur from injury to or ischemia of the main pancreatic duct or a side branch duct, although some, particularly early on, may be the result of third-space edema fluid. Peripancreatic fluid collections represent a heterogeneous entity.

THE CURRENT MANAGEMENT OF PANCREATIC PSEUDOCYST

POSTGASTRECTOMY SYNDROMES

GASTRECTOMY_OZIMOGAMA

The first postgastrectomy syndrome was noted not long after the first gastrectomy was performed: Billroth reported a case of epigastric pain associated with bilious vomiting as a sequel of gastric surgery in 1885. Several classic treatises exist on the subject; we cannot improve on them and merely provide a few references for the interested reader.

However, the indications for gastric resection have changed dramatically over the past 4 decades, and the overall incidence of gastric resection has decreased. The most marked reduction in the frequency of gastric resection has occurred among patients with peptic ulcer disease. For example, in Olmstead County, Minnesota, the incidence of elective operations on previously unoperated patients declined 8-fold during the 30-year study period between 1956 and 1985 and undoubtedly has declined even further since.

One population-based study concluded that elective surgery for ulcer disease had “virtually disappeared by 1992–1996.” Whereas emergency operations for bleeding and perforation are still encountered, acid-reducing procedures are being performed less frequently in these situations in favor of a damage control approach. Even for gastric cancer, resection rates decreased approximately 20% from 1988 to 2000 in the United States.

An estimated 21,000 new cases of stomach cancer occurred in the United States in 2010, so that the number of cases of gastric resection for cancer is probably less than 15,000 per year in the United States. The virtual disappearance of elective surgery for peptic ulcer has also changed the demographic profile of the postgastrectomy patient: patients who have gastric cancer tend to be older and there is only a slight male preponderance.

These significant changes in the gastric surgery population make it worthwhile to revisit postgastrectomy syndromes. The frequency with which postgastrectomy symptoms/syndromes are found can depend on how hard they are looked for. Loffeld, in a survey of 124 postgastrectomy patients, most of whom had undergone surgery more than 15 years earlier, found that 75% suffered from upper abdominal symptoms, and 1 or more symptoms that indicate dumping were found in 70% of patients who had undergone Billroth-II (B-II) reconstruction.

However, the lack of age-matched and sex-matched controls in this study may have overstated the frequency of symptoms caused by the surgical procedure. Mine and colleagues conducted a large survey of 1153 patients after gastrectomy for cancer and found that 67% reported early dumping and 38% late dumping. By contrast, Pedrazzani and colleagues surveyed 195 patients who underwent subtotal gastrectomy and B-II reconstruction for gastric adenocarcinoma for up to 5 years postoperatively, and concluded that “the incidence of late complications was low and the majority of them recovered within one year after surgery.”

This article focuses on the small proportion of patients with severe, debilitating symptoms; these symptoms can challenge the acumen of the surgeon who is providing the patient’s long-term follow-up and care.

POSTGASTRECTOMY_SYNDROMES_REVIEW_ARTICLE

Complications of HEMORROIDH SURGERY

Hemorroidectomia_DrOzimoGama

Symptomatic hemorrhoids require a number of therapeutic interventions each of which has its own complications. Office-based therapy such as rubber band ligation carries the risk of pain and bleeding, which are self-limited, but also carries the risk of rare complications such as sepsis, which may be life threatening. Operative treatment of hemorrhoids includes conventional hemorrhoidectomy, stapled hemorrhoidectomy, and the use of energy devices. Complications of pain and bleeding are common but self-limited. Late complications such as stenosis and fecal incontinence are rare. Recurrent disease is related to the initial grade and therapeutic approach. Treatment of recurrent hemorrhoids should be individualized based on previous treatments and the grade of disease. Anesthetic complications, especially urinary retention, are common and related to the anesthetic technique. Practitioners should council their patients as to the risks of the various approaches to treating symptomatic hemorrhoids.

HEMORRHOID SURGERY COMPLICATIONS_REVIEW

Laparoscopic Surgery for Morbid Obesity

The morbid obesity epidemic continues to spread throughout industrialized nations. It is a condition with a heterogeneous etiology, including genetic, psychosocial, and environmental factors. Prevention methods have currently been unable to halt the further spread of this disease. Obesity has been linked to increased healthcare costs, common physiologic derangements, reduced quality of life, and increased overall mortality. More than one third of adults and almost 17% of children in the United States are obese.

Medical therapy that can cause sustained significant weight loss may be years away. Bariatric surgery, when combined with a multidisciplinary team, continues to be the only proven method to achieve sustained weight loss in most patients. Bariatric procedures modify gastrointestinal anatomy and, in some cases, enteric hormone release to reduce caloric intake, reduce absorption, and alter metabolism to achieve weight loss. Currently, the three most common bariatric operations in the United States are Roux-en-Y gastric bypass, adjustable gastric band, and the vertical sleeve gastrectomy.

LAPAROSCOPIC SURGERY FOR MORBID OBESITY

PRINCIPLES OF OSTOMY MANAGEMENT

The creation of a stoma is a technical exercise. Like most undertakings, if done correctly, the stoma will usually function well with minimal complications for the remainder of the ostomate’s life. Conversely, if created poorly, stoma complications are common and can lead to years of misery. Intestinal stomas are in fact enterocutaneous anastomoses and all the principles that apply to creation of any anastomosis (i.e., using healthy intestine, avoiding ischemia and undue tension) are important in stoma creation.

PRINCIPLES OF OSTOMY MANAGEMENT

PREVENTION COMPLICATIONS OF COLON SURGERY

COMPLICATIONS OF COLON SURGERY_REVIEW ARTICLE


Imagem relacionada


Colon surgery represents a high number of patients treated at a department of gastrointestinal surgery and is not limited to colon cancer. It includes other non-neoplastic pathologies such as inflammatory bowel disease, diverticular disease or colonic volvulus. As with any major procedure, colon surgery patients may present serious or even fatal complications. The incidence of postoperative complications from colon surgery has been estimated at between 10% and 30% according to selected series. Preventive measures against surgical complications include selection of an appropriate procedure for the patient as well as good preoperative care, appropriate surgical technique and good postoperative management. When diagnosis has been established, risks for patient should be assessed according to patient’s health conditions and type of surgery accomplished. When the patient meets the surgical requirements, an appropriate course of preoperative care should be carried out including colon wash  antibiotics and antithrombotic prophylaxis. Postoperative period will be equivalent to any major abdominal surgery. Typically, it was considered appropriate to wait a few days before initiating feeding in order to protect anastomosis; however, some authors agree that an early oral diet hours after intervention is not associated with a higher risk of anastomotic dehiscence and other complications.


Sleeve Gastrectomy: Complications and Management

SLEEVE GASTRECTOMY COMPLICATIONS_REVIEW ARTICLE


Obesity is a common disease affecting adults and children. The incidence of obesity in worldwide is increasing. Laparoscopic sleeve gastrectomy (LSG) is a relatively new and effective procedure for weight loss. Owing to an increase in the number of bariatric surgical procedures, general surgeons should have an understanding of the complications associated with LSG and an approach for dealing with them. Early postoperative complications following LSG that need to be identified urgently include bleeding, staple line leak and development of an abscess. Delayed complications include strictures, nutritional deficiencies and gastresophageal reflux disease. We discuss the principles involved in the management of each complication.

EARLY COMPLICATIONS IN BARIATRIC SURGERY

REVIEW ARTICLE_BARIATRIC SURGERY COMPLICATIONS


ImagemThe risk of complications and mortality in bariatric surgery is associated with certain factors that are common to other patients and procedures, including age above 65 years, the presence of associated diseases (cardiovascular and pulmonary disease, chronic renal failure, liver cirrhosis, etc.), prior abdominal surgery, and the experience of the surgeon and the institution, especially concerning the ability to make an early diagnosis and address complications. The surgical complications observed in the early postoperative period following surgeries performed to treat severe obesity are similar to those associated with other major surgeries of the gastrointestinal tract. However, given the more frequent occurrence of medical comorbidities (such as diabetes, arterial hypertension, and sleep apnea), as well as the difficulty in making an early diagnosis of the complications (due to limitations of the clinical abdominal workup and imaging methods, such as ultrasonography and computed tomography, particularly in highly obese patients with body mass indices >50 kg/m²), these patients require special attention in the early post operative follow-up. Pulmonary thromboembolism, a complication associated with bariatric surgery, also requires greater attention from the medical team given the high mortality rate associated with this condition. Early diagnosis and appropriate treatment of these complications are directly associated with a greater probability of control.

Princípios da Cirurgia HepatoBiliar

Captura de tela 2016-11-09 20.48.47

Cirurgia Hepatobiliar


Considera-se que a cirurgia hepática começou após o advento da anestesia e da anti-sepsia. No entanto, muito antes disso, diversos autores já relatavam suas experiências com ressecções do fígado. As primeiras descrições de “cirurgias hepáticas” consistiam no relato de avulsões parciais ou totais de porções do fígado após lesões traumáticas do abdome. O relato de Elliot (1897) exemplifica muito dos temores dos cirurgiões da época: “O fígado (…) é tão friável, tão cheio de vasos e tão evidentemente impossível de ser suturado que parece ser improvável o manejo bem sucedido de grandes lesões de seu parênquima”.


CIRURGIA HEPATOBILIAR_ASPECTOS BÁSICOS

%d blogueiros gostam disto: